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ABSTRACT
Machine learning techniques have been used for predicting facility-related costs but there is a lack
of research on developing machine learning models for the complete life-cycle cost (LCC) analysis
of facilities. This research aims to systematically investigate the feasibility of forecasting facilities’
LCC by implementing machine learning on historical data. The authors propose a comprehensive
and generalizable framework for developing facility LCC analysis machine learning models. This
framework specifies the data requirements, methods, and expected results in each step of the
model development process. First, a literature review and a questionnaire survey were
conducted to determine the independent variables affecting facility LCC and to identify the
potential data sources. The process of using raw data to derive LCC components is then
discussed. Finally, a proof-of-concept case study was conducted on a university campus to
demonstrate the application of the proposed framework. This research concludes that current
building systems already contain the data for LCC analysis and that the proposed framework is
effective in facility LCC prediction.
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Introduction

A large quantity of resources are spent on constructing
new facilities and maintaining the existing ones. The
total cost of facility ownership can be minimized by
focusing on reducing the facility’s life cycle costs (LCC)
rather than the initial design and construction costs.
LCC analysis has become increasingly important in the
design of new buildings and in the retrofitting, refurbish-
ment, and renovations of existing buildings. Despite the
importance of LCC analysis, however, researchers and
industry professionals are facing challenges when practi-
cing LCC analysis in the Architecture, Engineering, Con-
struction, and Owner-operated (AECO) industry.
Currently, most LCC analysis methods, such as the
ones introduced in ASTM (2017), assume that one can
estimate a building component’s LCC if one knows its
price, life expectancy, and the cost of all the operating
and maintenance activities associated with it. The real
service lives and costs of many buildings and their sys-
tems, however, are difficult to predict for multiple
reasons. One is that there is always a mismatch between
the predicted energy performance of a building and the
actual measured performance, typically addressed as
‘the performance gap’ (De Wilde, 2014). Another reason

may be that, according to the authors’ experience, many
building systems and components, with appropriate
maintenance and repair, can function beyond the war-
ranty, which makes their true costs difficult to predict
because the facility owners typically do not know how
much money and labour will be needed to repair them
when they malfunction after the warranty expires. More-
over, even the same types of systems used in different
buildings may have different LCC because monetary
and labour costs vary depending on each facility man-
ager’s operational profile on building systems.

In recent years, with the development of machine
learning technologies, new opportunities have been
emerging for data analyst and cost estimators to predict
building-related costs more precisely. Machine learning
is an automated process that extracts patterns from
data (Kelleher, Namee, & D’Arcy, 2015). In the field of
predictive data analytics, machine learning is a method
used to devise complex prediction algorithms and
models (Kelleher et al., 2015; Mitchell, 1997). With
sufficient data, it is possible to quickly and automatically
produce machine learning models that can analyse a
large amount of complex data and deliver fast and accu-
rate results (Pantic, 2019). By building precise models, an
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organization can uncover hidden insights, predict future
values, and produce reliable, repeatable decisions
through learning from historical relationships and trends
in the data (SAS, 2018). As a viable alternative to simu-
lation tools, machine learning techniques can give an
accurate quantitative estimation of energy demand for
different building systems (Deng, Fannon, & Eckelman,
2018) and predict facility-related costs (Gao, Pishdad-
Bozorgi, Shelden, & Hu, 2019).

The development of valid and robust machine learn-
ing models requires extensive data (Alpaydin, 2014). The
hypothesis is that the evolving building systems, such as
Building Automation Systems (BAS), Computerized
Maintenance Management Systems (CMMS), and Build-
ing Energy Management Systems (BEMS), already con-
tain many valuable data but have not been sufficiently
used for developing LCC machine learning models.
Data such as building features, utility consumptions,
and maintenance work orders can be extracted from
these systems. By implementing machine learning on
this data, it is possible to achieve a better understanding
of a facility’s LCC and overcomemultiple barriers associ-
ated with current LCC analysis methods. Hence, more
informed decisions in building design, construction,
and facility management can be achieved. More research
is needed to elucidate how to utilize the existing data
housed in separate building systems for LCC machine
learning model development.

For this purpose, in this research, the authors system-
atically investigate the feasibility of forecasting facilities’
LCC by implementing machine learning on historical
data. Specific research questions include the following:
(1) whether an organization that operates multiple build-
ings can predict its new and existing buildings’ overall
LCC by utilizing machine learning models trained
from historical data; (2) whether a generalized frame-
work can be developed that is applicable to different
organizations with various types of facilities; (3) whether
the existing building systems already contain the data
required to establish the predictive models for LCC.

To answer these questions, the authors propose a
comprehensive and generalizable framework for devel-
oping facility LCC analysis machine learning models.
This framework specifies the data requirements,
methods, and expected results in each step of the
model development process. It offers guidance for for-
malizing knowledge in facility LCC analysis by capturing
necessary information from diverse data sources and
reasoning about the captured data with machine learning
techniques. It is envisioned that, through the capture and
analysis of historical data relevant to facility costs, tacit
knowledge of LCC analysis can be semi-automatically
formalized through the proposed framework, which

will reduce reliance on individual researchers for knowl-
edge formalization.

Literature review

In recent years, the development of machine learning
techniques has been providing building experts with
new opportunities to achieve more accurate predictions
of facility-related costs in the early design phase or
even the programming phase. This section introduces
the machine learning algorithms that can be used for
facility-related cost prediction, before presenting a sum-
mary of current research on the development of machine
learning techniques for the prediction of facilities’ initial
costs, utility costs, and operation and maintenance
(O&M) costs. Research gaps are identified and discussed
at the end of this section.

To identify related publications involving machine
learning applications in the facility LCC prediction
field, a keyword search is performed in academic data-
bases, including Elsevier, Emerald Insight, EBSCO,
Wiley, ASCE, CIB, Springer, Taylor & Francis, and
ISPRS. Articles with abstracts containing ‘machine learn-
ing’ or ‘prediction’ and the keywords ‘building cost’,
‘energy consumption’, ‘operation cost’, and ‘mainten-
ance cost’ are identified and reviewed. The following
aspects of each reviewed paper are examined: (1)
research methodology, (2) algorithm used, (3) applicable
facility type, (4) what kind(s) of costs are considered, (5)
what descriptive attributes are used in the prediction
model, (6) whether a case study/experiment has been
conducted, and (7) the size of the dataset. The reviewed
research studies are summarized in a table that was pub-
lished on the open data platform OSF (Gao & Pishdad-
Bozorgi, 2019b).

Machine learning methods for facility cost
prediction

Linear regression and gradient descent
Regression analysis is a technique for modelling the
relationship between variables (Montgomery, Peck, &
Vining, 2012). If the relationship between the indepen-
dent variables (descriptive attributes) and the dependent
variable (target attribute) is linear, then the model is
called a linear regression model. A model that involves
only one independent variable is called a simple linear
regression (SLR) model; a model that involves multiple
independent variables is called a multiple linear
regression (MLR) model. If the relationship between
the independent variable(s), x, and the dependent vari-
able, y, is modelled as an nth degree polynomial in x, it
is called a polynomial regression model. Although the
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polynomial regression model is nonlinear from the data
perspective, it is considered a linear machine learning
model. This is because the regression function is linear
in the unknown parameters that are derived from the
data. Therefore, polynomial regression is considered to
be a special case of MLR (Montgomery et al., 2012).

Gradient descent is a commonly employed iterative
optimization algorithm to find the values of parameters
(coefficients) of a function that minimizes a cost function
(Alpaydin, 2014). It can be used to solve both a linear
and a nonlinear system. In predictive analytics, MLR
with gradient descent is the most common approach to
error-based machine learning, the goal of which is to
find the set of parameters for a model that minimizes
the total error across the predictions made by the
model (Kelleher et al., 2015).

K-nearest neighbours regression
The K-nearest neighbours (KNN) algorithm is a non-
parametric method that can be used for regression analy-
sis (Altman, 1992). It is a type of instance-based learning,
or lazy learning, and is considered one of the simplest
machine learning algorithms (Alpaydin, 2014). The out-
put of a KNN regression is the object’s property value,
which is the average of the values of the object’s k nearest
neighbours (Altman, 1992). The KNN regression model
is a composition of each local model with the prediction
made, which is a function of the target feature value of
the instance in the dataset closest to the query; hence,
it is sensitive to noise in the target feature (Kelleher
et al., 2015). In addition, the KNN regression model
uses the full set of descriptive features when making a
prediction, which renders it particularly sensitive to the
occurrence of missing descriptive feature values (Kelle-
her et al., 2015). The KNN is a similarity-based approach
to machine learning, which originates from the idea of
making predictions based on what has proved effective
in the past (Kelleher et al., 2015).

Regression trees and random forest
A decision tree is a hierarchical tree-like model com-
posed of a root node, interior nodes, and leaf nodes
(Alpaydin, 2014). The decision tree machine learning
model uses a decision tree to progress from the descrip-
tions of an item (represented in the root node and
interior nodes) to conclusions of the item’s target value
(represented in leaf nodes) (Kelleher et al., 2015).
Decision trees where the target variable can take con-
tinuous values are called regression trees. The decision
tree is the fundamental structure used in information-
based machine learning, which adopts information
theory (Gleick, 2011) as a method of determining the
shortest sequence of descriptive feature tests required

to generate a prediction (Kelleher et al., 2015). In
regression analysis, Random Forest is a method that con-
structs many decision trees during training and outputs
the class that is the mean prediction of the individual
trees (Barandiaran, 1998).

Support vector machines regression
The Support vector machines (SVM) regression is
another commonly used method of error-based machine
learning for predictive analytics. The Support Vector
algorithm is a nonlinear generalization of the General-
ized Portrait algorithm (Smola & Schölkopf, 2004). It is
grounded in the framework of statistical learning theory,
characterizing properties of learning machines that
enable them to generalize well to unseen data (Smola
& Schölkopf, 2004). SVMs are a specific class of algor-
ithms that are characterized by ‘usage of kernels, absence
of local minima, sparseness of the solution, and capacity
control obtained by acting on the margins, or on the
number of support vectors’ (Gelfusa et al., 2015).
SVMs map input vectors into a high dimensional feature
space, where a maximal margin hyperplane is con-
structed (Chapelle & Vapnik, 2000). It is possible to
apply SVMs to regression problems by introducing an
alternative loss function that is modified to include a dis-
tance measure (Dibike, Velickov, & Solomatine, 2000;
Smola, 1996; Smola & Schölkopf, 2004).

Artificial neural network and multilayer perceptron
Artificial neural networks (ANNs) are computing sys-
tems inspired by the biological neural networks that con-
stitute animal brains (Haykin, 2009). The ANN itself is
not an algorithm but rather a framework to federate
different machine learning algorithms for complex
analysis (Haykin, 2009). Multilayer perceptron (MLP)
is an ANN structure and is a non-parametric estimator
that can be used for regression (Alpaydin, 2014). MLP
utilizes a supervised learning technique called backpro-
pagation for training and consists of at least three layers
of nodes: an input layer, one or multiple hidden layers,
and an output layer (Goodfellow, Bengio, & Courville,
2016; Rosenblatt, 1961; Rumelhart, Hinton, & Williams,
1985). One strength of MLP concerns the capability to
distinguish data that are not linearly separable (Cybenko,
1989). MLP is also a method of error-based machine
learning for predictive analytics (Kelleher et al., 2015).

Initial costs prediction

Accurate estimation in the early design stage is vital for
the successful execution of a construction project.
Using machine learning techniques, research studies
have provided practitioners with decision-support tools
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for estimating construction duration and costs before the
completion of a project’s design stage, or even during the
programming phase (Hong, Hyun, & Moon, 2011; Jin,
Han, Hyun, & Cha, 2016; Koo, Hong, Hyun, Park, &
Seo, 2010). Construction costs prediction studies can
be categorized into three major groups based on the
methods used, which are (1) regression analysis
(Alshamrani, 2017; Jafarzadeh, Wilkinson, Gonzalez,
Ingham, & Amiri, 2014; Li, Shen, & Love, 2005; Lowe,
Emsley, & Harding, 2006; Sonmez, 2008; Trost & Ober-
lender, 2003; Zayed & Halpin, 2005) (2) case-based
reasoning (CBR; Dogan, Arditi, & Gunaydin, 2006,
2008; Hong et al., 2011; Jin et al., 2016; Koo et al.,
2010), and (3) ANN (Bala, Ahmad Bustani, & Shehu
Waziri, 2014; Cheng, Tsai, & Sudjono, 2010; Dursun &
Stoy, 2016; Kim, Yoon, An, Cho, & Kang, 2004; Shi &
Li, 2008).

Studies have been conducted to compare the cost pre-
diction performance of models based on different
machine learning methods. For example, Kim, An, and
Kang (2004) compared the accuracy of MLR, ANN,
and CBR by experimenting on 530 residential buildings’
construction costs. The results indicated that, although
the ANN model yields more accurate results than the
MLR and CBR models, the CBR model performs better
than the ANN model in terms of ease of updating and
consistency in the variables stored for long-term use.
Researchers have also studied the performance of
machine learning methods in specific cost prediction
cases. Based on 71 projects conducted by a medium-
sized electrical contractor, Aibinu, Dassanayake, Chan,
and Thangaraj (2015) concluded that cost forecasting
models based on ANN outperform regression models
in predicting the costs of light wiring, power wiring,
and cable pathways. Sajadfar and Ma (2015) compared
the prediction accuracies of the models based on linear
regression, MLR, KNN regression, decision tree
regression, and ANN. They found that the ANN model
exhibits the highest accuracy for welding operations.

Utility costs prediction

Understanding the underlying dynamics of building uti-
lity consumption (energy, water, and gas) and predicting
the consumption are essential for building resource plan-
ning, management, and conservation (Amasyali & El-
Gohary, 2018; Zhang, Cao, & Romagnoli, 2018). Energy
(electricity) consumption prediction is the most exten-
sively studied topic in the facility LCC prediction field.
This is probably because the electricity meters and
sensors distributed in facilities provide sufficient high-
resolution data, hourly or even quarter-hourly, for
researchers to investigate utility costs in detail (Moon,

Park, Hwang, & Jun, 2018; Park, Choi, Hong, Lee, &
Moon, 2018; Sala-Cardoso, Delgado-Prieto, Kampouro-
poulos, & Romeral, 2018). The most commonly used
machine learning methods for energy forecasting involve
(1) ANNs (Mocanu, Nguyen, Kling, & Gibescu, 2016;
Park et al., 2018; Sala-Cardoso et al., 2018), (2) SVM
regression (Chou & Ngo, 2016; Jain, Smith, Culligan, &
Taylor, 2014), and (3) CBR (An, Kim, & Kang, 2007;
Ji, Hong, Jeong, & Leigh, 2014).

Most of the reviewed studies in the utility consump-
tion prediction field developed multiple machine learn-
ing models and compared their performance (Bouktif,
Fiaz, Ouni, & Serhani, 2018; Robinson et al., 2017). For
example, Geysen, De Somer, Johansson, Brage, and Van-
houdt (2018) developed a thermal load forecasting sys-
tem that incorporated a collection of machine learning
methods: linear regression, extremely randomized trees
regression (ETR), ANN, and SVM regression. The exper-
iment results indicated that linear regression performs
the worst while ANN and ETR perform slightly better
than SVM. The study conducted by Moon et al. (2018)
also showed that the ANN-based model outperforms
the SVM regression-based model in electric load fore-
casting. The study of Idowu, Saguna, Ahlund, and Sche-
len (2016), however, demonstrated that SVM offers
better prediction performance than ANN and MLR in
forecasting the thermal load in district heating
substations.

O&M costs prediction

Studies on using machine learning to predict O&M costs
are relatively rare. This is probably because obtaining
accurate maintenance data is challenging (Weerasinghe,
Ramachandra, & Rotimi, 2016). The most commonly
used machine learning methods in O&M costs forecast-
ing are multiple regression (Au-Yong, Ali, & Ahmad,
2014; Krstić & Marenjak, 2017; Li & Guo, 2012a; Weer-
asinghe et al., 2016) and ANN (Li & Guo, 2012a; Tu &
Huang, 2013). Au-Yong et al. (2014) found that the
characteristics of condition-based maintenance of office
buildings directly influence the cost performance.
Based on these relationships, they developed a regression
model for maintenance planning and prediction. Krstić
and Marenjak (2017) developed a multiple regression
model to predict the O&M costs for university buildings
during the initial design phase. Li & Guo (2012a, 2012b)
developed maintenance cost prediction models for uni-
versity buildings using SLR, multiple regression, and
back-propagation ANN. The results indicated that the
back-propagation ANN model outperforms the other
two models. Li and Guo (2012a, 2012b) also found that
the first peak of renovation for university buildings will
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be at around 20 years of age and that the second peak will
occur at around 35 years of age; for a building with more
than five floors, meanwhile, they found that the first and
second peak of renovation will be at 15 and 30 years of
age, respectively.

Research gaps

Machine learning techniques can provide an accurate
quantitative estimation of energy demand for different
building systems (Deng et al., 2018) and can predict
facility-related costs (Gao et al., 2019). There are, how-
ever, gaps in research regarding the development of
machine learning models for LCC analysis. These are
enumerated as follows.

Although machine learning techniques have been
implemented in forecasting construction costs, utility
consumption, and O&M costs, respectively, their
application in predicting a building’s total LCC is
rarely found in the literature. There is a need for
more studies that utilizing machine learning to predict
a building’s overall LCC and illuminate the underlying
relationships between each cost components (such as
initial design and construction costs, utility costs,
and O&M costs).

Many challenges discussed in this field can be attrib-
uted to data insufficiency, including a lack of sufficient
metering and accessibility, and poor data quality (Galla-
gher, Leahy, O’Donovan, Bruton, & O’Sullivan, 2018).
The machine learning models used in many studies
were established based on a very limited dataset (Shi &
Li, 2008; Sonmez, 2008). As Milion, Paliari, and Liboni
(2016) point out, ‘data survey is the most difficult chal-
lenge in estimation studies’. Limited and uncertain infor-
mation hinder accurate prediction of construction-
related costs (Koo, Hong, & Hyun, 2011). The lack of
reliable and consistent data also limits the application
of LCC analysis in the early design stage (Weerasinghe
et al., 2016). What data to record and how organizations
should record the facility data for machine learning-
based LCC analysis are seldom discussed in the
literature.

Most of the developed machine learning models are
only applicable to one type of building projects, such
as housing (Hong et al., 2011; Jin et al., 2016), edu-
cational buildings (Li & Guo, 2012a), and office buildings
(Koo et al., 2010). By nature, predictive models involve
assumptions and simplifications based on similarities
between the studied subjects. Therefore, the uniqueness
of different building projects precludes the use of one
model to predict different types of buildings’ LCC
(Bala et al., 2014; Banihashemi, Ding, & Wang, 2017;
Hong et al., 2011).

The authors believe that it is possible to establish gen-
eralizable frameworks for developing facility LCC analy-
sis machine learning models. These frameworks would
specify the means and processes for the following: (1)
identifying potential descriptive attributes (the input to
machine learning models), such as by conducting a lit-
erature review or a survey; (2) data acquisition, such as
by exporting data from BAS or CMMS, by finding the
records in drawings and specifications, and by conduct-
ing surveys; (3) attributes selection; (4) machine learning
algorithm selection; (5) applying the algorithms to the
data; and (6) model evaluation. Currently, such a frame-
work is yet to be developed. This motivated the authors
to conduct the present study in an attempt to bridge the
identified research gaps.

Research method

To examine the feasibility of developing LCC machine
learning models based on the historical data housed in
different building systems, the authors designed this
research as a mixed-methods study, which consists of a
literature review, a questionnaire survey, and a case
study. A literature review was conducted first to prelimi-
narily identify the independent variables affecting build-
ing LCC. All variables that were used for building-related
cost prediction in the reviewed research studies were col-
lected. A questionnaire survey was then designed to col-
lect experts’ opinions on the preliminary variable list to
supplement the results derived from the literature review
and to ensure the comprehensiveness of the independent
variable pool of the machine learning models. The parti-
cipating experts were grouped into three categories –
experts in initial costs, experts in utility costs, and experts
in O&M costs – and each expert was asked to fill out a
corresponding questionnaire. The initial cost experts
consisted of eight individuals who are construction cost
estimators and project managers with experience ran-
ging from 2 years to 34 years. The utility cost experts
consisted of six individuals who are college professors,
postdoctoral researchers, and doctoral students working
in this area, with experience ranging from 2 years to 42
years. The O&M cost experts consisted of five individuals
who are facility managers and building data analysts with
experience ranging from 12 years to 26 years. The poten-
tial influential factors (independent variables) were listed
in the questionnaire, and the experts were asked to assess
their impact on facility initial design and construction
costs, utility costs, or O&M costs. In addition, the experts
were asked to specify any additional influential factors
that were not listed in the questionnaire.

Based on the identified independent variable list, the
authors propose a framework that specifies the data
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sources, the data integration process, the method for
using the raw data to derive LCC components, and the
overall machine learning model development and evalu-
ation process. Finally, a proof-of-concept case study was
conducted on a university campus to demonstrate the
application of the proposed framework. The proposed
framework is used to develop LCC prediction models
for the university’s budget planning and administration,
and facilities management departments. These predic-
tion models were designed to forecast facilities’ LCC
during the programming phase using very limited
input such as gross square footage (GSF), the owner of
the building (which college), the number of floors, and
the space allocations. The goal was to provide these
departments with a tool to quickly estimate and forecast
the LCC of existing and future buildings (during the pro-
gramming phase when building design is not yet avail-
able) and without the input of building cost experts.

Identifying the independent variables
through literature review and questionnaire
survey

The influential factors (independent variables for the
machine learning models) that affect the overall building
LCC were identified through the literature review and
questionnaire survey. The developed questionnaires
were published on the open data platform OSF (Gao &
Pishdad-Bozorgi, 2019d). The full list of independent
variables is summarized in a table that was also published
on OSF (Gao & Pishdad-Bozorgi, 2019c). Several factors
that have not been mentioned by others were also pro-
posed and listed in this table.

In the case study, the proposed framework was used
to develop LCC prediction models during the program-
ming phase when the available model inputs are limited
to variables such as GSF, the owner, the total number of
floors, and the space allocation (the percentage of class-
room, laboratory, office, etc.). Hence, the variable pool
for the case study was narrowed down to 21 variables
that are available during the programming phase.
These variables are shown in Table 1.

The overall framework for developing
machine learning models for facility LCC
analysis

Figure 1 presents the overall framework for developing
machine learning models for facility LCC analysis,
which consists of four major modules: (1) obtaining
the descriptive attributes, (2) obtaining the target attri-
butes, (3) training the machine learning models, and

(4) evaluating the models and selecting the most suitable
one.

Assumptions

In this research, there are three underlying assumptions
for utilizing the historical data to predict facility LCC:

(1) All historical data are correct: All the meter reading
are accurate, and the records in each building sys-
tem, whether automatically saved or manually
inputted, are correct, with outliers in the data ident-
ified and excluded.

(2) The simulated data can reflect the actual costs: The
missing data (because the sensors were not deployed
or malfunctioning), such as utility consumptions or
O&M costs, can be estimated by forecasting or back-
casting based on the historical data.

(3) The inflation rate related to building costs is the
same as the general inflation rate: It is assumed
that the discount rate for building costs in the Uni-
ted States can be represented by the general inflation
rate provided by the United States Bureau of Labor
Statistics (Bureau of Labor Statistics, 2018b).

Module 1: obtaining the descriptive attributes
(the independent variables)

This module answers two questions: What are the factors
significantly influencing facility LCC, and where can the
related data be found? The results derived from the lit-
erature review and the questionnaire survey regarding
the descriptive attributes to be used in the machine
learning models are summarized in the table published
on the open data platform OSF (Gao & Pishdad-Bozorgi,
2019c).

Table 1. The descriptive attributes of the machine learning
models.

Gross square footage
The Architect

Company (architect)
The General

Contractor (contractor)

The college (owner) Number of floors (floor) LEED Certification (LEED)

Centralized heating/
cooling? (heat_cool)

Building Service Area %
(BLDG_SVC)

Circulation Area % (CIRC)

Mechanical Area %
(MECH)

Laboratory Facilities %
(LAB_FAC)

Classroom Facilities %
(CLS_FAC)

Office Facilities %
(OFF_FAC)

Study Facilities %
(STDY_FAC)

Residential Facilities %
(RES_FAC)

Special Use Facilities %
(SPEC_USE)

General Use Facilities %
(GEN_USE)

Support Facilities %
(SUPP_FAC)

Health Care Facilities %
(HLTH_FAC)

Other Usage % (other) Building Age (age)

* The attribute names are in the brackets.

506 X. GAO AND P. PISHDAD-BOZORGI



Data availability is the most significant challenge for
facility LCC analysis (Gao & Pishdad-Bozorgi, 2019a;
Milion et al., 2016). Many building managers and oper-
ators are using building management and control sys-
tems in their daily work. These systems, such as the
BAS, the CMMS, and the BEMS, are constantly collect-
ing or generating facility – and human-activity-related
data, a portion of which can serve as the raw data for
LCC analysis. Potential data sources that can be used
to derive each LCC component are itemized in Table 2.

Figure 2 illustrates a high-level data acquisition pro-
cess for LCC analysis. The design and construction docu-
mentation refers to construction drawings, estimation
reports, scheduling, manuals, and specifications. The
required building data can be automatically extracted
from building information models (BIM) if they are
appropriately developed and include relevant infor-
mation (Gao & Pishdad-Bozorgi, 2018; Pishdad-Bozorgi,
2017; Pishdad-Bozorgi, Gao, Eastman, & Self, 2018).

BIM, which refer to the ‘digital twin’ of a building
(Eastman, Teicholz, Sacks, & Liston, 2011), can provide
the data related to potential descriptive attributes, such
as structure type, building geometry, and foundation,
as Figure 1 shows (Gao & Pishdad-Bozorgi, 2019a; Pish-
dad-Bozorgi et al., 2018). For organizations that do not
have well-developed BIM (e.g. BIM with a level of devel-
opment of 400) for all facilities, the required data can be
found in the design and construction documentation.
For example, design drawings contain building geometry
and structural, foundational, and general building infor-
mation, such as building age and function, while the con-
struction documents contain construction management-
related information, such as the delivery method and
construction duration (which may influence the initial
cost). After operation, a building’s space allocations
may change over time, and this kind of change may
not be timely reflected in the BIM. In this case, the up-
to-date space allocation data can be found in the inte-
grated workplace management system (IWMS) or
other space management system.

Figure 1. The overall LCC machine learning model development.

Table 2. The LCC components and their potential data sources
LCC component Potential data source

Initial design and
construction costs

. IWMS – the capital planning and
investment control module.

. The construction cost estimation report that
records the detailed construction costs.

. The design contract that records the design
costs.

Utility costs (utility
consumptions)

. The BAS / Building Management System
(BMS)

. The BEMS

O&M costs . CMMS

Replacement costs . The same source as the initial costs
. CMMS
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Module 2: obtaining the target attributes (the
present value of cost components)

The first and most challenging task of an LCC analysis
for a building is to determine the economic effects of
alternatives and to quantify these effects and express
them in monetary amounts (Fuller, 2010). After the
cost-related data are extracted from the building systems

and stored in one database, machine learning techniques
can be implemented on them to forecast each LCC com-
ponent of a building. The overall process of deriving LCC
components is illustrated in Figure 3. The raw data used
for deriving the initial design and construction costs, uti-
lity costs, and O&M costs are extracted from multiple
building systems (discussed in the section entitled
‘Data Requirements and Data Sources’). The data

Figure 2. The overall LCC data acquisition process.

Figure 3. Module 2: obtaining the target attributes.
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indexed in time order, utility consumption and O&M
costs, are analysed using time series methods, and pro-
jections are made when necessary. For example, projec-
tions are made when there are missing values because
sensors were not deployed in the past. Public statistics
such as the historical inflation rate, utility price, and
labour rate are incorporated into the analysis to calculate
the monetary costs and to convert the costs to their pre-
sent values. These present values of the LCC components
are the target attributes of the LCC analysis machine
learning models.

To compare the LCC of facilities built in different
years, their costs need to be discounted to the present
value of a certain year. The present value of the initial
cost is calculated by multiplying the amount of the initial
cost by the cumulative interest rate, as the following
equation shows:

PVIC = IC ×
∏t

i=1
(1+ ri), (1)

where PVIC is the present value of the initial cost, IC is
the amount of the initial cost, t is the building age and
ri is the annual inflation rate of i years ago.

The present value of the utility cost is calculated as fol-
lows: (1) First, each year’s utility consumption is multi-
plied by the utility price of that year to determine the
cost amount of that year, which is then multiplied by
the cumulative interest rate to yield the present value
of that year’s utility cost; and (2) Finally, the present
values of each year’s utility cost are added up. The fol-
lowing equation presents the calculation:

PVU =
∑n

j=1
UCj × UPj ×

∏j

i=1
(1+ ri)

( )
, (2)

where PVU is the present value of the utility cost, which
can be composed of electricity cost, water cost, gas cost,
etc., UCj is the annual utility consumption of j years ago,
UPj is the utility price of j years ago, n is the length of the
study period in years and ri is the annual inflation rate of
i years ago.

The present value of the O&M cost is calculated by (1)
multiplying each year’s labour hours expended by the
average O&M labour rate of that year, which produces
the labour cost amount of that year; (2) adding each
year’s the labour cost amount to the O&M monetary
cost of that year, which yields the total O&M cost
amount of that year; (3) multiplying each year’s total
O&M cost amount by the cumulative interest rate to
derive the present value of that year’s O&M cost; and
(4) calculating the sum of the present values of each
year’s O&M cost. The following equation represents

the calculation:

PVOM =
∑n

j=1
(LHj × LPj + OMCj)×

∏j

i=1
(1+ ri)

( )
,

(3)

where PVOM is the present value of the O&M cost, LHj is
the annual labour hours expended on O&M j years ago,
LPj is the O&M labour rate j years ago, OMCj is the
annual O&M monetary cost j years ago and ri is the
annual inflation rate of i years ago.

The present values of the initial costs, utility costs, and
O&M costs are the target attributes of the LCC analysis
machine learning models. In contrast to the descriptive
attributes, which remain relatively static over a certain
time period (such as 3 months), the target attributes
are dynamic and can vary with real-time utility con-
sumption and O&M costs. Therefore, a framework to
acquire and integrate the dynamic facility data in an
automated fashion is desirable for the overall facility
LCC analysis machine learning model development
process.

Module 3: training machine learning models

With the descriptive attributes and target attributes
ready, the next step is to train the machine learning
models based on these data. In this research, the machine
learning methods tested involve linear regression, SVM
regression, KNN regression, regression trees, and MLP.
According to the literature review, these machine learn-
ing methods have proved effective in building-related
cost prediction. In the proposed framework, the method
pool of training regression models for facility LCC analy-
sis is expandable: As new machine learning techniques in
predictive data analytics are developed, more methods
can be adopted and implemented within the framework.

Module 4: evaluating the models

Evaluating the models and selecting the best performing
machine learning algorithm for facility LCC prediction
can be accomplished by comparing the models’ perform-
ance through repeated random sampling and cross-vali-
dation, as demonstrated in Figure 4, which is inspired by
Hu and Castro-Lacouture (2019). First, the dataset is
randomly split into the training set and test set at a
ratio of, say, 7:3. Multiple pairs are generated by ran-
domly sampling data points in the training set and
data points in the test set (e.g. m pairs). For each pair
(e.g. the pair j), its training data point is used for training
machine learning models implementing each algorithm,
and then k-fold cross-validation is conducted to yield a
series of evaluation results on each of these models
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(Pj1, Pj2,… , Pjk). The average performance, Pj, is used to
represent the performance of the corresponding algor-
ithm. After repeating the training and cross-validation
process for each of the randomly generated data pairs
(m in total), each of the algorithms has m performance
evaluation outcomes (P1, P2,… , Pj,… , Pm). These out-
comes are then analysed by evaluation methods such as
an analysis of variance (ANOVA) or Kruskal–Wallis test
to determine which algorithm outperforms the others

(Hu & Castro-Lacouture, 2019). ANOVA and the Krus-
kal–Wallis test are two of the most commonly used
methods to compare the performance of algorithms
and evaluate if there are significant differences.
ANOVA is commonly used to assess differences between
groups on a continuous measurement, but it requires
that the data follow normal distributions (Tabachnick,
Fidell, & Ullman, 2007). Unlike ANOVA, the Kruskal–
Wallis test does not assume a normal distribution of

Figure 4. Machine learning algorithm evaluation and selection process.
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the residuals; this makes it a suitable assessment method
for use when the data do not follow normal distributions
(Kvam & Vidakovic, 2007). The most suitable machine
learning method would possibly be different from one
case to another, depending on the length of the time
span studied, the attributes used, and the size and quality
of the dataset.

A proof-of-concept case study

Overview

One of the challenges usually faced by an organization’s
capital planning department and/or facility manage-
ment department is that they lack an effective means
to quickly estimate a new facility’s LCC during the pro-
gramming phase, when no building design is available.
Typically, during this phase, the decision makers have
to determine the budget (estimated initial building
cost) based on very limited information: the owner,
the building function (user requirements), total building
area, the number of floors, and, probably, the space dis-
tribution. It is already a challenging task without the
consideration of the life-cycle utility and operation
costs. Moreover, the predicted LCC data provided by
survey and consulting companies, such as the White-
stone facility operation cost reference (Romani, Abate,
Miller, & Dotz, 2014) and maintenance and repair
cost reference (Abate, Towers, Dotz, Romani, & Miller,
2014), may be overgeneralized and cannot reflect the
organization’s facility operation profile.

The goal
The proposed machine learning-based LCC analysis
approach in this research provides organizations that
own multiple facilities with a solution to the LCC pre-
diction issue. A series of experiments were conducted
on a university campus (hereafter referred to as ‘the
university’). In these experiments, the proposed
machine learning-enabled LCC analysis framework
was used to develop LCC prediction models for the uni-
versity’s budget planning and administration, and facili-
ties management departments. These prediction models
were designed to forecast facilities’ LCC during the pro-
gramming phase using very limited input, such as GSF,
the owner of the building (which college), the number
of floors, and the space allocations. The goal was to pro-
vide these departments with a tool to quickly estimate
and forecast the LCC of existing and future buildings
(during the programming phase when building design
is not yet available) without the input of building cost
experts.

About the university
The university has been established for over 130 years
and owns more than 250 buildings, half of which are
well metered with networks of sophisticated sensors
and devices. These networks of devices embedded in
the buildings’ systems are generating the data needed
for developing the LCC prediction machine learning
models. The building systems operated by the university
involve BAS Metasys (Johnson Controls Inc., 2018), the
CMMS AiM System (AssetWorks, 2018), and the Capital
Planning & Space Management System (CPSMS)
INSITE (The INSITE Consortium, 2019).

Machine learning models were developed based on
the historical data of 123 buildings on campus. The
basic statistics of these buildings are presented in
Table 3. The building types include residential buildings,
libraries, dining halls, athletic facilities, parking decks,
and educational complexes that consist of laboratories,
classrooms, and offices.

Data acquisition

The initial cost and space allocation
The university’s CPSMS publishes the space manage-
ment data of each campus building through a web sys-
tem (Georgia Institute of Technology, 2019), which is
based on Tableau (Tableau, 2019). This website also con-
tains each building’s initial cost. The raw data of initial
cost and space allocation were downloaded from this
website. Figure 5 shows the website’s interface.

The utility consumption
The utility consumption data – electricity, water, and gas
– were generated by the university’s BAS and published
on a website (shown in Figure 6) (Georgia Institute of
Technology, 2018).

For most buildings of the university, the utility con-
sumption data are available since 1 October 2012, with
an interval of 15 min. In this research, the utility data
used were from 1 October 2012 to 1 September 2018.
The data (CSV files) were downloaded using Ion Data
Grabber (Ntrepid Corporation, 2018) from the

Table 3. The basic statistics information of the buildings in the
case study

Building
age

Gross square
footage (GSF/

GSM)
Number
of floors

initial cost
(present value in

1999)

Maximum 99 966,203/
89,763

13 $113,216,000

Minimum 2 384/36 1 $280,000

Mean 39.37 96,871/9,000 3.9 $18,107,000

Median 33 48,666/4,521 4 $9,560,000
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EnergyWatch system developed by the university’s Aero-
space Systems Design Laboratory (Aerospace System
Design Laboratory, 2019).

The O&M costs
The university’s O&M work order records in the CMMS,
AiM System, are available since 2006. Up to 1 September

Figure 5. The web-based building information dashboard.
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2018, there were over 750,000 lines of records. These
records were exported from the AiM System as a CSV
file.

Data processing

Data cleaning
Based on the raw data, each building’s weekly and
monthly utility consumption was calculated, and outliers
removed. Most of the studied buildings’ monthly utility

consumption exhibits a repetitive pattern every year.
Figure 7 provides two examples.

OpenRefine (openrefine.org, 2018) and MATLAB
were used to clean the O&M work order records and
thus to obtain the annual O&M cost of each building.

Data simulation: time series backcasting
In the experiments, the building costs are studied within
a 20-year time frame – from 1999 to 2018. During this
time frame, for the buildings that lack historical data
before a certain year (because the building was newly

Figure 7. Examples of building electricity consumption trends.

Figure 6. The website that publishes the utility consumption data.
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built or sensors were not deployed), time series backcast-
ing was used to simulate the data. The machine learning
software tool R Studio (Microsoft, 2019) was used to per-
form time series backcasting to simulate the past utility
consumption and O&M cost. Figure 8 presents an
example of building electricity consumption backcasting.
The electricity consumption figures reveal repeating pat-
terns. In the figure, the polygonal lines outside the blue
area represent the actual consumption, while the ones
in the blue area are the backcast expectations of actual
consumption (simulated historical data). The darker
blue area is the 95% prediction interval; the lighter
blue area is the 80% prediction interval. For the buildings
whose utility consumption or O&M cost did not exhibit
repeating patterns, the mean of the actual annual cost
was used as the simulated data.

Discounting to present value
Thepresent value (1999) of the initial cost, utility cost, and
O&Mcostwere calculated according to Equations (1), (2),
and (3), respectively. The historical annual inflation rate
used was based on the Consumer Price Index (CPI) stat-
istics provided by the Bureau of Labor Statistics (BLS)
(Bureau of Labor Statistics, 2018b; US Inflation

Calculator, 2019). The utility prices used were the average
energy prices provided by BLS (Bureau of Labor Statistics,
2018a). The O&M labour rate used was based on the Cur-
rent Employment Statistics (CES National) provided by
BLS (Bureau of Labor Statistics, 2019).

Model development

Because the prediction models were designed to forecast
facilities’ LCC during the programming phase, the
descriptive attributes (model inputs) used are the ones
that can be known in this phase. The descriptive attri-
butes involved are listed in Table 1. Most of the descrip-
tive attributes are related to space allocation, such as the
percentage of building service area, classroom facilities,
and laboratory facilities.

Two kinds of machine learning models were devel-
oped for LCC prediction: the single-target regression
model and the multi-target regression model. The for-
mer assumes the LCC components (the target features)
are independent of each other, while the latter considers
their intercorrelations. To develop the single-target
regression model, the authors tested multiple regression
algorithms, including (1) MLR, (2) KNN, (3) random

Figure 8. An example of building electricity consumption data backcasting.
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forest, (4) SVM, and (5) MLP. To develop the multi-tar-
get regression model, the authors tested multi-output
random forest and MLP.

To determine the best performing algorithm, the
experiment was repeated 100 times (loops). In each
loop, the full dataset was randomly split into the training
set and the test set at a ratio of 8:2. The training set was
then used to train the machine learning models with
each algorithm. The trained models were then tested
using the test set and the mean absolute error (MAE)
was used to evaluate their effectiveness. Finally, the
MAEs of each model calculated in all the loops were
averaged to produce a final evaluation result, which
was used to compare the performance of each model.

The MLR models were developed using the R package
stats version 3.5.1 (R-project.org, 2019). The method
used for fitting was QR decomposition.

The KNN regression models were developed using the
R package FNN version 1.1 (Beygelzimer et al., 2019). In
general, a large k value (number of neighbours) is more
precise as it reduces the overall noise. Given limited data
and the number of different campus building types, how-
ever, after a series of tests, the authors had to set the k
value to 3, rather than 10 or more, to achieve the best
possible results. The nearest neighbour search algorithm
used was KD Tree.

The random forest regression models were developed
with the R package randomForest version 4.6-14 (Brei-
man, Cutler, Liaw, & Wiener, 2019). Five variables
were randomly sampled as candidates at each split.
The number of trees to grow was set to 500.

The SVM regression models were developed with the
R package e1071 version 1.7-0 (Probability Theory
Group, 2019). The kernel function used was polynomial.
The gamma parameter, which defines how far the influ-
ence of a single training example reaches, was set to 1/
(the number of descriptive attributes). The coef0 par-
ameter was set to 0 and the degree was set to 3.

The MLP single-target regression models were devel-
oped with the R package keras version 2.1.6 (Allaire et al.,
2019). The MLP models contained three hidden layers
with 10, 8, and 5 nodes, respectively. The batch size
(the number of samples per gradient update) was set to
80. The number of epochs used to train the model was
100. In each epoch, 95% of the training set instances
were used to train the model and used the other 5%
for validation.

The multi-output random forest models were devel-
oped with the R Package MultivariateRandomForest ver-
sion 1.1.5 (Rahman, 2019). The number of trees in the
forest was set to 100, and the number of randomly
selected descriptive attributes considered for a split in
each regression tree node was set to 10. The minimum
number of samples in the leaf node was 40.

The MLP multi-target regression models were devel-
oped using the R Package keras version 2.1.6. The models
contained three hidden layers with 10, 8, and 5 nodes,
respectively. The batch size was set to 90. The number
of epochs to train the model was, again, 100. In each
epoch, 90% of the training set instances were used to
train the model and the other 10% for validation. Figure 9
shows the structure of the developed MLP multi-target

Figure 9. The structure of the MLP multi-target regression model for facility LCC prediction.
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regression model. This optimal MLP structure for the
case study was devised after a series of experiments
were conducted to test MLP structures containing one
to six hidden layers with nodes ranging from 3 to 12 in
number.

Results

This experiment incorporated the data of 123 buildings
and used 21 descriptive attributes (as Table 1 indicates).
By studying the linear correlation of each numerical
descriptive attributes and target attribute, it is found
that, in terms of cost per square foot (SF), the initial
cost exhibits weak positive correlations with the utility
cost (0.27), the O&M cost (0.34), and the percentage of
special use facilities (0.33). This indicates that more
expensive buildings (per SF) tend to cost more in
terms of utility cost and O&M cost. Buildings with a
higher percentage of special use facilities are also more
expensive. The utility cost shows weak negative corre-
lations with the number of floors (−0.30) and circulation
area (−0.31). The O&M cost displays a weak positive

correlation with office facilities (0.40) and negative corre-
lations with the number of floors (−0.35) and the percen-
tage of residential facilities (−0.41). Figure 10 presents
the scatter matrix of linear correlations between the
studied buildings’ initial cost per SF, utility cost per SF,
O&M cost per SF, GSF, number of floors, and building
age. These results imply that buildings with more
floors tend to cost less in terms of utility cost and
O&M cost. The buildings with a greater percentage of
office facilities tend to be more expensive to operate
and maintain, while residential buildings tend to cost
less in terms of O&M cost.

It is also found that the building owner (the college or
department that uses the building) is one of the most rel-
evant independent variables affecting the studied build-
ings’ LCC. Figure 11 shows the number of buildings by
the college/owner and the initial cost per SF. The College
of Engineering and the Department of Housing (residen-
tial buildings) own the most buildings. Buildings owned
by the College of Engineering are, on average, more
expensive. The residential buildings and parking decks
are the least expensive facilities in terms of cost per SF.

Figure 10. The linear correlations between variables.
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Figure 12 presents the number of buildings by the col-
lege/owner and the utility cost per SF. Figure 13 provides
the number of buildings by the college/owner and the
O&M cost per SF. These figures indicate that the build-
ings owned by the College of Engineering generally cost
more in terms of utilities and O&M. There is an athletic
facility and an administrative building that cost over
$300 dollars per SF (present value in 1999) in utilities
during the 20-year study period. The residential build-
ings and parking decks are also the most energy-efficient
facilities and demand low maintenance cost.

The experiment results for each machine learning
algorithm (MAE) are presented in Table 4. When devel-
oping the model, the target attributes – initial cost, utility
cost, and O&M cost – were normalized based on the
mean and standard deviation of the overall data.
Hence, the values of these target attributes range from
0 to 1. As a result of this, more intuitive results were
derived to interpret and to compare the accuracy of
each model.

Discussions

In the case study, the MLR models serve as a control
group because MLR is one of the most straightforward
machine learning algorithms, which is based on the fol-
lowing assumptions: (1) the dependent variable and the
independent variables are linearly correlated, (2) the
independent variables are not highly correlated with
each other, and (3) the residuals are normally distributed
with a mean of 0 (Montgomery et al., 2012). After ana-
lysing the linear correlation of each independent variable
in the experiment, it is found that some of the indepen-
dent variables exhibit correlations with one another,
such as the GSF and the number of floors (0.66), the
office facilities percentage and the building service area
percentage (0.47), and the residential facilities percentage
and the office facilities percentage (−0.54). Moreover,
there are too many independent variables (21) compared
to the size of the dataset (123). Therefore, MLR models
are expected to yield inaccurate prediction results, and
the case study results confirmed the conclusions made

Figure 11. The count of buildings by the owner and initial cost.

BUILDING RESEARCH & INFORMATION 517



by Kim, Yoon, et al. (2004) and Sajadfar and Ma (2015)
in terms of the accuracy of MLR models.

KNN is also a simple algorithm, which predicts the
numerical target based on a similarity measure. Because
it is a non-parametric lazy learning algorithm, no
assumptions on the underlying data distribution are
made; this means that KNN does not require the data
to obey the typical theoretical assumptions, such as nor-
mal distribution. This makes KNN a better fit than MLR
because most of the data in this experiment do not follow
a typical distribution. The results confirmed this expec-
tation: The KNN models significantly improved on the
prediction accuracies of the MLR models, with MAE
lowered by 12.66%, 16.90%, and 21.04% for initial cost,
utility cost, and O&M cost, respectively.

A single regression tree tends to overfit the data (Kelle-
her et al., 2015). Random forest models combine the
results of different decision trees, and can thus overcome
the problem of overfitting, to a certain extent. Random
forestmodels also have less variance than a single decision
tree, which means that they perform better for a large

range of data items than single decision trees. The results
of this experiment indicated that the random forest
models slightly outperformed the KNN models, with
MAE lowered by approximately 3% for each cost com-
ponent. The performance of the random forest models,
however, may have been compromised by the non-para-
metric nature of most of the data in this experiment.

The L2 regularization feature of SVM provides the
generalization capability that can prevent it from over-
fitting (Awad & Khanna, 2015). Using kernel trick,
SVM can also efficiently handle non-linear data (Hof-
mann, 2006), which makes it ideal for this experiment’s
dataset. The evaluation results indicated that the SVM
regression models generated the most accurate predic-
tions. Based on the results of 100 experiments, the
single-target regression models using SVM had average
MAEs of 27.97%, 37.08%, and 39.40% for the predictions
of initial cost, utility cost, and O&M cost, respectively.

The MLP models’ poor performance was not antici-
pated. During the testing phase to determine the optimal
MLP structure, some of the MLP models achieved an

Figure 12. The count of buildings by owner and utility cost.
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MAE as low as 12% to 18%. Figure 14 shows an example
of the MLP model training process (100 epochs, batch
size 32, validation split 0.1). In the experiment, however,
because the training set and testing set were randomly
selected in each loop, there were cases in which the
instances (buildings) in the testing set had characters
so different from those of the instances in the training
set (such as in the case where all athletic facilities were
in the testing set) that the trained MLP models

performed extremely poorly, with an MAE over 200%.
This resulted in the unexpectedly high overall MAE of
the MLP models. Moreover, because MLP models pro-
duce problem solutions without explaining the reason
why the network behaves in this way, it is difficult to pin-
point other problems. Consequently, it is challenging to
further improve MLP models.

It was expected that the single-target regression
models would outperform their multi-target counter-
parts in terms of single cost component predictions.
This is because single-target regression models are opti-
mized for the single target rather than all the targets
together. Each set of the LCC prediction results was gen-
erated by three single-target regression models, while
one multi-target regression model can accomplish the
same. In the case of MLP, however, the multi-target
model outperformed the single-target model in the pre-
diction of initial cost and utility cost, with the MAE low-
ered by 5.64% and 2.10%, respectively. Using the
relationships between the target variables, MLP showed
potential for being used to establish a complicated

Figure 13. The count of buildings by the owner and O&M cost.

Table 4. The evaluation results of each machine learning model
in MAE (normalized)

Initial
cost (%)

Utility
cost (%)

O&M
cost (%)

Single-target
regression
model

MLR 46.01% 60.99% 62.49%
KNN regression 33.35% 44.09% 41.45%
Random forest 30.23% 41.07% 38.80%
SVM regression 27.97% 37.08% 39.40%
MLP 57.32% 59.81% 52.48%

Multi-target
regression
model

Multi-target
random forest

46.44% 55.88% 58.84%

Multi-target
MLP

51.68% 57.71% 57.35%

BUILDING RESEARCH & INFORMATION 519



multi-target regression model to predict all the com-
ponents of LCC.

Data scarcity is the major barrier that compromised
the accuracy of the prediction models, as pointed out by
Gallagher et al. (2018). Although a large amount of data
were collected from multiple building systems, 123
instances (buildings) are still a small dataset for machine
learning methods. Moreover, the building types of the
studied university are diverse, and there are very few
instances of some of the building types that were studied
in this experiment. For example, the college campus had
only one healthcare facility, one library, and three College
of Computing buildings. The diversity of the studied
buildings’ characteristics rendered it difficult for the
machine learningmodels to make highly accurate predic-
tions based on the 21 descriptive attributes that were
available during the programming phase.

Despite their limitations, the machine learning
models developed in this experiment demonstrated
their usefulness in facility LCC prediction. The SVM
models had an average MAE of 27.97% for initial cost
predictions. This level of accuracy is on a par with a
rough order of magnitude estimate provided by an
expert (with 28 years’ experience in construction cost
estimation) during the programming phase. The advan-
tage of the tool developed in the case study, however, lies
in the fact that it can provide an LCC estimate, whereas
an estimator typically only provides an estimate for

design and construction costs. Unlike with commercial
or residential buildings, there is typically no effective
method of predicting a college campus building’s future
utility and O&M costs during the programming phase.
With the models developed in this experiment, the uni-
versity’s management now has the capability to predict a
campus building’s future utility and O&M costs.

The proposed framework offers guidance for forma-
lizing knowledge in facility LCC analysis by capturing
necessary information from diverse data sources and
reasoning about the captured data with machine learning
techniques. because the framework was validated
through a case study conducted on a university campus,
this research offers the potential for developing a univer-
sally applicable machine learning-enabled LCC analysis
framework for other types of organizations with multiple
facilities. College campus buildings are diverse in terms
of functions and costs. If the proposed framework is
effective for universities, there is a strong possibility
that it could be applicable for infrastructure, government
buildings, military bases, commercial buildings, and resi-
dential buildings. Further case studies are needed, how-
ever, to demonstrate the generalizability of the
proposed framework.

From a practitioner’s perspective, by exploring the new
possibility for a more accurate prediction of a facility’s
LCC through leveraging machine learning and historical
data housed in heterogeneous building systems, the

Figure 14. An example of MLP training process, and the losses and MAE.
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authors have achieved more than simply studying the
LCC of an individual project in the programming phase.
This achievement involves demonstrating an example of
the use of machine learning-enabled automation to facili-
tate decision making in facilities management. By utiliz-
ing current machine learning approaches, the present
work transformed historical building data into actionable
knowledge: ‘This is how much you will spend over the
next 20 years on this building.’ This research provides a
knowledge base for decision makers to access whenever
they need to take a building’s LCC into account. One of
the advantages of this knowledge base is that it can evolve
over time: Existing available data are used to predict facil-
ity LCC, andnewdata can be incorporated as they become
available. It is an iterative knowledge accumulation of
facility costs that can not only identify performance
trends and the ‘hot spots’ of utility and O&M expense,
but also contribute to help identifying the best practices
in facility design, construction, and operation from a
cost-efficiency perspective.

This research has two major limitations. First, the case
study used for validating the proposed LCC framework
was limited to developing machine learning models for
overall LCC predictions during the programming
phase. This framework is applicable to all building
design, construction, and facilities management phases,
and machine learning models for analysis of a building’s
LCC can be developed as soon as the relevant data
become available. The models developed in this exper-
iment can only predict the lump sums of the initial
cost, utility cost, and O&M cost, respectively. With
more detailed building cost data, such as the cost break-
down according to CSI MasterFormat structure or Uni-
Format structure, machine learning models for more
detailed cost estimation could be developed based on
the proposed framework. Second, no benchmarking
tool (the baseline) was available to evaluate the improve-
ments in prediction accuracy provided by the developed
models. The studied university did not have a prediction
tool to use during the programming phase. The univer-
sity’s budget planning and administration department,
and facilities management departments had not used
the historical data for building LCC predictions before.
Typically, cost estimators are hired to perform the initial
cost prediction, but these data were not available to com-
pare with the predictions produced by the developed
machine learning models. Moreover, the utility and
O&M cost estimation did not have a comparison base,
because the estimation of these costs, if any, is typically
conducted after the design has become available. The sta-
keholders in the university lacked a viable tool to con-
duct LCC analysis of utility and O&M costs during the
programming phase.

Conclusion

In this research, the authors have demonstrated that
many current building systems already contain the
data needed for facility LCC analysis. The utility and
O&M costs can be derived from the raw data generated
by and housed in the corresponding systems, such as
BAS, BEMS, and CMMS. Most of the descriptive attri-
butes needed for machine learning can be found in
BIM and building management systems such as IWMS
and space management system. Although some organiz-
ations have many buildings that are not equipped with
all the above-mentioned systems, the general trend is
that building managers and operators are increasingly
relying on building management and control systems
in their daily work. It can be expected that most large
organizations operating multiple facilities will, if they
have not already done so, adopt these building systems
in the near future.

This research contributes to the body of knowledge
through the authors’ innovative implementation of
machine learning to predict the total LCC of facilities,
using historical data stored in building systems. The pro-
posed framework minimizes human involvement to the
greatest possible extent. People make mistakes: The
higher the number of people involved in the data proces-
sing and analysis process, the greater the risk that the
analysis will be exposed to human errors. In addition,
some stakeholders tend to be very protective of their
money-related data, which makes collecting historical
data extremely difficult (Weerasinghe et al., 2016). In
this research, the authors bypassed some of the existing
barriers in cost analysis by using data directly derived
from building systems. This more transparent approach
provides reliable insights into facility LCC patterns.

There are some opportunities for further applications
of the proposed LCC analysis framework. First, BIM
could serve as the platform for both acquiring building
data and presenting LCC knowledge. In this research,
the LCC analysis results are presented in a ‘one-dimen-
sional’ form, in tables containing numbers. Future
studies could develop a BIM-based presentation plat-
form to allow for visualization of the LCC analysis results
in a multi-dimensional form that would be comprehen-
sible and intuitive for stakeholders. For example, future
research could involve the study of using BIM platforms
to provide data visualizations of the analysis results.
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