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A B S T R A C T   

The user persona is a communication tool for designers to generate a mental model that describes the archetype 
of users. Developing building occupant personas is proven to be an effective method for human-centered smart 
building design, which considers occupant comfort, behavior, and energy consumption. Optimization of building 
energy consumption also requires a deep understanding of occupants’ preferences and behaviors. The current 
approaches to developing building occupant personas face a major obstruction of manual data processing and 
analysis. This study proposes a machine learning-based approach for occupant characteristics classification and 
prediction with a view toward partially automating the building occupant persona generation process. It in-
vestigates the 2015 Residential Energy Consumption Dataset with six machine learning techniques — Linear 
Discriminant Analysis, K Nearest Neighbors, Decision Tree (Random Forest), Support Vector Machine, and, 
AdaBoost classifier — for the prediction of 16 occupant characteristics, such as age, education, and, thermal 
comfort. The models achieved moderate accuracy in predicting most of the occupant characteristics and 
significantly higher accuracy (over 90%) for attributes including the number of occupants in the household, their 
age group, and preferred usage of primary cooling equipment. The results of the study show the feasibility of 
using machine learning techniques for occupant characteristics prediction and automating the development of 
building occupant persona to minimize human effort.   

1. Introduction 

People spend most of the time indoors [1], and the impact of a 
building on its occupants is significant [2]. Smart Buildings are buildings 
that integrate intelligence, enterprise, control, materials, and construc-
tion as an entire building system, with adaptability, not reactivity, at its 
core, to meet the drivers for building progression: energy and efficiency, 
longevity, comfort, and, satisfaction [3]. In recent years, human- 
centeredness has become an increasingly important factor for smart 
building design and operation. Optimizing building performance re-
quires a deep understanding of occupants’ behavior and preferences. 
Developing building occupant personas is proven to be effective in 
creating occupant profiles for human-centered smart buildings [4]. An 
occupant persona is a tool of communication for designers to develop a 
conceptual model that describes the archetype of occupants [5]. The 
development of a building occupant persona can assist the building 
designers, developers, and, engineers in accurately estimating resource 
demand through realistic and representative occupant profiles, enabling 

pragmatic occupant-centric building design and operation. The 
increasing availability of data from a wide range of sources will allow 
smart buildings to become adaptable, and prepare themselves for 
context and change over all timescales [3]. 

One of the key objectives of smart buildings is to maximize occupant 
comfort while minimizing energy consumption [6]. Buildings and urban 
spaces increasingly incorporate artificial intelligence and new forms of 
interactivity, raising a wide span of research questions about the future 
of human experiences with, and within, built environments. This 
emerging area is defined as Human-Building Interaction (HBI) [7]. HBI 
affects human wellbeing and the surrounding environment. Although 
energy and technology are placed into buildings by people for their own 
comfort and recreation, often the decision-making process excludes the 
human factor from the design itself. Smart buildings provide an op-
portunity to consider the physical, physiological, and, psychological 
needs of occupants in the building design. Human-centered design 
(HCD) places humans at the center of the building design, which can 
accelerate smart housing design for people. To maximize human well- 
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being and the optimize performance of smart buildings, an iterative, 
human-centered approach to building design must be employed. 

Agee et al. [4] introduced a human-centered approach to smart 
housing, leading to the development of data-driven smart housing per-
sonas that communicate smart housing user needs. In their work, the 
authors utilized descriptive statistics and behavioral analysis to describe 
the physical, physiological, and psychological needs of the occupants. 
Personas help designers anchor their work in a fictional user’s needs in 
the design of products and systems [8]. Their proposed approach can 
reduce the risk of designers designing for themselves. 

Developing building occupant personas benefits both the occupants 
and building designers in many ways. A user-centric building design can 
help understand the needs, behaviors, and preferences of the potential 
occupants, building designers can create spaces that are tailored to the 
users’ needs, leading to a more user-centered design approach. By 
designing buildings with the occupant persona in mind, the building can 
provide a more pleasant and satisfying experience for the occupants, 
leading to higher levels of user satisfaction and productivity. 

Designing buildings that meet the needs of the occupant persona can 
lead to improved building performance, such as energy efficiency and 
indoor air quality, as the building is designed to meet the specific needs 
of its occupants. It can also reduce the need for retrofits and renovations, 
resulting in cost savings over the building’s lifecycle. Understanding the 
needs and preferences of potential occupants can help building-owners 
and developers to better market and lease the building, leading to 
higher occupancy rates and increased revenue. 

However, the task faces multiple challenges beginning with the 
limited availability of building occupant data. The lack of data related to 
occupants and their living environment is one of the major pullbacks in 
smart housing persona development research. Even with the limited 
data that is available, the process of developing building occupant 
persona is manual and time-consuming. 

Currently, the occupant persona development process requires re-
searchers manually analyzing data, conducting interviews, clustering 
the occupant profiles based on multiple criteria, and finally constructing 
a persona [4]. The entire process takes much time because it involves 
manual labor in all the steps. Automating a single step of this procedure 
can accelerate the entire persona development task. This work tries to 
address the gap of accelerating the tedious and time consumption pro-
cess of occupant persona development by incorporating machine 
learning tools in the process of occupant characteristics classification 
and prediction. Related studies in the domain indicate that the charac-
terization of occupant behavior using machine learning tools on energy 
usage data has not been studied yet. Moreover, although there is a 
scarcity of residential building data, there has been some work to 
address this issue recently. For example, Anik et al. [9] presented a cost- 
effective and portable framework for indoor data collection, and Song, et 
al. [10] discussed data collection and analysis methods for analyzing 
human comfort in the indoor environment. With more building data 
available, and the development of machine learning technologies, new 
opportunities are emerging. Machine learning is an automated process 
that extracts patterns from data [11]. In the field of predictive data 
analytics, machine learning is a method used to devise complex pre-
diction algorithms and models [12]. Machine learning models that can 
deliver fast and accurate results given appropriate data are provided 
[13]. 

In this work, we apply machine learning to the 2015 Residential 
Energy Consumption Survey Data for building occupant characteristics 
classification and prediction which can lead to automating some steps of 
building occupant persona development. The procedure includes data 
processing, feature engineering, selection of target variables, training, 
and evaluating the models. This work aims to answer the following 
research questions:  

• RQ1: How effectively can machine learning tools predict individual 
building occupant characteristics?  

• RQ2: How do machine learning algorithms compare with each other 
when predicting building occupant characteristics? 

The rest of the paper is structured as follows: Section 2 reviews 
relevant studies conducted in the domain of building occupant persona 
development and machine learning methods for occupant behavior 
modeling. Section 3 presents the methodology, description of the data, 
and machine learning models used. Section 4 demonstrates the machine 
learning evaluation details. Section 5 discusses the development of 
building occupant persona using the findings of this work, the limita-
tions, and, the future research directions. Finally, section 6 concludes 
the research. 

2. Related works 

2.1. Occupant behavior and building energy performance 

The building occupant persona is an effective and concise way to 
represent these characteristics for human-centered building design and 
operation. Several studies have investigated the relationship between 
occupant behavior and building performance, focusing on different as-
pects and contexts, such as performance assessment, energy efficiency & 
policies, consumption discrepancies, building control, and, residential 
buildings. 

Studies have highlighted the need to consider occupant perspectives 
and behaviors in building performance evaluation and energy reduction 
initiatives. O’Brien et al. [14] and D’Oca et al. [15] focused on inte-
grating occupant dimensions into building design and performance 
assessment. O’Brien et al. [14] proposed occupant-centric building 
performance metrics, while D’Oca et al. [15] reviewed the human di-
mensions of energy use in buildings and advocate for their integration 
into design and operation processes. 

Occupant behavior has been shown to have a significant impact on 
energy efficiency. Pan et al. [16] analyzed occupant behavior and 
electricity load patterns in Shanghai, China, identifying different groups 
with distinct patterns and recommending energy-saving measures. Sun 
et al. [17,18] addressed the challenge of accurately evaluating the en-
ergy savings potential of occupant behavior and propose frameworks for 
quantifying the influence of occupant behavior on energy conservation 
measures. These studies provided valuable insights for energy efficiency 
decision-making and building energy simulation. Hu et al. [19] 
emphasized the importance of integrating occupant behavior into 
building energy policies, discussing the challenges and opportunities in 
this area. They highlighted the need for further research and consider 
the integration of occupant behavior in building technical standards, 
regulations, and energy incentives. The study provided insights into the 
role of occupant behavior in energy policy development. Ortiz et al. [20] 
studied the motivations behind comfort behaviors and energy con-
sumption discrepancies among occupants with different behavioral 
patterns. They grouped occupants into categories based on psychologi-
cal and behavioral models, highlighting the distinct opinions and dis-
crepancies in self-reported answers. The study emphasized the 
importance of understanding occupants’ comfort needs for a better un-
derstanding of home energy consumption. 

In the residential building sector, Agee et al. [4] and Malik et al. [21] 
examined the occupants’ behaviors and characteristics in residential 
housing. 

Agee et al. [4] conducted a study on a human-centered approach to 
smart housing, collecting data from 309 residential housing units in 
Virginia, U.S. They employed a multi-phase, mixed methods research 
design and used affinity diagraming to identify occupants’ HBI activities 
and develop data-driven Personas. Malik et al. [21] researched the 
occupant behavior of 1223 low-income households in India and estab-
lished occupant archetypes based on behavioral and psychographic 
characteristics. Both studies emphasize the importance of understanding 
occupant behavior for energy demand estimation and occupant-centric 
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building designs. 
Some studies also highlighted the need for differentiated and dis-

aggregated energy profiles in building energy modeling. Dong et al. 
[22,23] focused on occupant behavior modeling and control strategies. 
Dong et al. [22,23] presented a methodology for integrated building 
heating and cooling control using predictive models of occupant 
behavior, while their second work explores the potential of utilizing 
urban big data and advanced modeling methods for modeling urban- 
scale occupant behaviors. These studies contributed to the develop-
ment of occupant behavior models and control strategies for reducing 
energy consumption while maintaining occupant comfort. Buttitta et al. 
[24] proposed a method for developing occupancy-integrated arche-
types to characterize heat demand in residential buildings. They show 
that using occupancy profiles from existing models may lead to signifi-
cant discrepancies in heat demand estimation. 

2.2. Human factors and indoor environmental quality 

Indoor Environmental Quality (IEQ) is a multidimensional concept 
that encompasses various aspects of the indoor environment affecting 
human health, comfort, and overall well-being [25,26]. These factors 
include indoor air quality, lighting, temperature, humidity, noise, and 
aesthetics [25–27]. In recent years, understanding the complex rela-
tionship between human factors and IEQ has become essential for ar-
chitects, designers, and building managers [28]. 

The density of occupancy in a given indoor space plays a pivotal role 
in shaping IEQ. A high concentration of occupants may lead to increased 
levels of CO2, heat, and humidity, negatively affecting the indoor 
environment. This overcrowding can reduce air quality and create 
discomfort, particularly in poorly ventilated spaces. Bortolini and For-
cada [29] conducted a detailed analysis of IEQ in forty-two rooms across 
twelve flats in six buildings located in Porto, Portugal, monitoring fac-
tors such as temperature, water vapor pressure excess, CO2 levels, 
particulate matter (PM2.5), and total volatile organic compounds 
(TVOC) over a three-week period during the spring. The findings 
revealed higher CO2 concentrations and PM2.5 indoor/outdoor values 
than those in existing literature, indicating poorly ventilated rooms, 
and, a cluster analysis was performed to form four groups qualitatively 
classified in terms of IEQ. 

Human behavior and activities within a building can contribute to or 
detract from IEQ [30,31]. Activities such as smoking, cooking, and usage 
of personal care products can introduce pollutants into the environment. 
Conversely, actions like opening windows or adjusting thermostats 
demonstrate how occupants often attempt to control their environment 
to increase comfort. 

Human choices related to building materials, furnishings, and fin-
ishes have profound implications for IEQ [32]. For instance, materials 
that emit Volatile Organic Compounds (VOCs) can deteriorate indoor air 
quality. Considering non-toxic and environmentally friendly options can 
enhance indoor environmental quality and align with increasing societal 
values regarding sustainability. The maintenance and management of 
building components are also vital human factors influencing IEQ. 
Negligence in regular cleaning, repair, and maintenance can lead to the 
growth of mold, accumulation of dust, or breakdown of systems that 
control the indoor environment [33]. Effective maintenance practices 
are key to ensuring long-term health and comfort for building occupants. 

Thermal comfort is a complex, subjective area where individual 
preferences can vary widely. The challenge lies in accommodating 
diverse human needs through effective HVAC system design, which 
considers temperature, humidity, and air movement [34]. Striking the 
right balance is essential to ensure that occupants find the environment 
neither too cold nor too hot, contributing positively to IEQ. Lighting is 
an integral part of IEQ, affecting both visual comfort and psychological 
well-being [35]. While some individuals may prefer the warmth and 
natural feel of sunlight, others may find artificial lighting adequate. The 
design of lighting systems must consider these human factors, utilizing 

both natural and artificial light in a way that enhances productivity and 
mood [36]. 

Individual sensitivities to noise can vary widely, and exposure to 
unwanted or excessive noise can lead to discomfort, stress, and reduced 
productivity [37]. From a building design perspective, considering noise 
sensitivity means paying attention to acoustics, the choice of materials, 
layout, and possibly incorporating soundproofing measures. Effective 
noise control aligns with the broader goal of enhancing IEQ, contrib-
uting to a more pleasant and satisfying indoor environment that caters to 
the diverse needs and preferences of its occupants. 

2.3. Machine learning in occupant behavior modeling 

Machine learning approaches have been employed to model occu-
pant behavior and its influence on energy consumption. Amasyali et al. 
[38] proposed a data-driven method that includes machine learning- 
based models for predicting energy consumption and comfort, along 
with a genetic algorithm-based optimization model for optimizing 
occupant behavior. Carlucci et al. [39] used a machine learning model 
trained on a large dataset of energy-use cases to predict building energy 
consumption, highlighting the impact of occupant behavior and iden-
tifying opportunities for energy-saving measures. Li et al. [40] utilized 
machine learning techniques to develop a load prediction model for 
residential buildings, considering occupant behavior as a predictor 
variable. Their study demonstrated the potential of data-driven machine 
learning models in aiding decision-making for building design and 
retrofit processes. 

Some studies have shown machine learning models’ potential to 
enhance occupant satisfaction and energy efficiency in buildings. Deng 
et al. [41] focus on predicting indoor thermal comfort by developing 
artificial neural network (ANN) models that incorporate thermal sen-
sations and occupants’ behavior. The models were trained on data 
collected from offices and houses/apartments, showing promise in 
predicting thermal comfort in different environments. Peng et al. [42] 
proposed a demand-driven control strategy for HVAC systems that re-
sponds to occupants’ energy-related behavior, aiming to reduce energy 
consumption and maintain room temperature. Their approach com-
bined unsupervised and supervised machine learning methods to learn 
occupants’ behavior and automate the cooling system’s control. Kim et 
al. [43] explored the development of personal comfort models based on 
occupants’ heating and cooling behavior data. They employed machine 
learning algorithms and demonstrated improved accuracy in predicting 
individuals’ thermal preferences compared to conventional models. 

Machine learning methods have also been used to establish energy- 
saving incentives in building design. Sun et al. [44] introduced a data 
analytics framework for detecting changes in occupant behaviors to 
support the design of energy-saving incentives. Their framework com-
bined forecasting individual energy consumption with determining 
behavior change probabilities, utilizing machine learning and statistical 
methods. The study emphasized the importance of advanced analytics 
for detecting behavior changes and designing effective energy-saving 
measures. Yu et al. [45] presented a methodology for identifying and 
improving occupant behavior in residential buildings. Their approach 
incorporated cluster analysis, classification analysis, and association 
rules mining to analyze end-use loads and identify energy-inefficient 
behaviors. The methodology proved effective in providing recommen-
dations to occupants and evaluating the energy-saving potential of 
behavior modifications. 

These studies collectively contribute to understanding occupant 
behavior, its influence on building performance, energy consumption, 
comfort, and, the potential of machine learning and data analytics in 
modeling and optimizing occupant behavior for energy-efficient build-
ings. The development of a human-centered building and understanding 
of building occupants requires vast data on both energy consumption 
and occupant behavior. The absence of either of these factors not only 
obstructs the thoroughness of the process of developing a persona for 
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building occupants but also leads to inaccurate outcomes. Despite the 
challenges in modeling occupant behavior due to the unpredictable 
nature and diversity of human behavior, it is crucial to examine the 
general patterns of their behaviors and incorporate this information into 
the building energy model [46]. Modeling occupant behavior remains 
one of the key steps in the process of building occupant persona devel-
opment. A valid occupant behavior model needs to have the potential to 
simulate realistic building users’ reactions to different built environ-
ments, and the lack of real occupant behavioral data accounts for a gap 
in research. The human-centered building occupant persona develop-
ment process proposed in [4] requires manual human work of labeling, 
filtering, and clustering data from large datasets. These steps are both 
labor and time extensive, which impede the entire process. To address 
these research gaps, this research utilizes real-world occupant data with 
machine learning tools to classify building occupant characteristics 
which can accelerate the process of building occupant persona 
development. 

3. Methodology 

Developing occupant characteristics persona is a difficult and time- 
consuming task [4]. Using the latest machine learning tools can help 
alleviate the process. However, there are some challenges to using ma-
chine learning tools in the development of building occupant persona. 
This section describes the challenges and the methodology followed by 
this work to overcome these challenges in using state-of-the-art machine 
learning models in occupant characteristics classification and 
prediction. 

3.1. Challenges of using machine learning tools in building occupant 
persona development process 

This work aimed towards using state-of-the-art machine learning 
models in the development of building occupant personas. Along the 
path, the hurdles in the task were identified. The following are the key 
challenges of using machine learning models in building occupant 
persona development:  

(i) Acquiring the necessary data: Obtaining a dataset that accurately 
represents the target population can be challenging and time- 
consuming. Collecting data on a variety of factors such as de-
mographics, lifestyle, and behavior can be costly and may require 
specialized knowledge.  

(ii) Identifying relevant variables: Determining which variables to 
include in the model can be difficult due to the large number of 
potential variables that may be relevant. This requires a deep 
understanding of the target population and the factors that in-
fluence their behavior.  

(iii) Choosing the appropriate model: Selecting which ML models to 
use: There are many different machine learning models that can 
be used for occupant persona development, each with its own 
strengths and weaknesses. Selecting the most appropriate model 
for a given problem requires a thorough understanding of the 
data and the problem at hand. Additionally, different models may 
require different levels of computational resources and expertise 
to implement, which can affect the feasibility of using a particular 
model.  

(iv) Fine-tuning hyperparameters of models for individual target 
variables: Finally, even after selecting an appropriate machine 
learning model, there is a significant amount of tuning that must 
be done to ensure that the model is effective at predicting the 
target variables. This involves adjusting the hyper-parameters of 
the model to optimize performance, which can be time- 
consuming and require significant computational resources. 
Moreover, hyperparameter tuning may need to be done 

separately for each target variable, which further increases the 
complexity of the problem.  

(v) Interpreting the results: Interpreting the results of a machine 
learning model can be challenging, especially when dealing with 
complex models. Understanding the factors that contribute to the 
model’s predictions can be difficult, which may limit the use-
fulness of the model for developing occupant personas.  

(vi) Data privacy concerns: Collecting and storing data on individuals 
raises privacy concerns. Care must be taken to ensure that data is 
collected and used in compliance with relevant privacy laws and 
regulations. 

3.2. Methodology overview 

Fig. 1 illustrates the framework of this research, which is inspired by 
a study conducted by Zhongguo et al. [47]. The process begins with 
processing the 2015 Residential Energy Consumption Dataset [48]. The 
metadata is extracted, and the data is cleaned in the pre-processing step. 
Then, 16 target variables are chosen to represent occupant character-
istics, such as age, education, income, thermal preference, etc. The rest 
of the attributes remain as descriptive variables and are filtered through 
the feature selection step, in which the irrelevant and redundant vari-
ables are dropped. Then, six machine learning models for classification 
prediction tasks are selected and tested. These models are trained 
through the 10-fold cross-validation and the evaluated results are pre-
sented here. The following sections describe the different components of 
the methodology of this work. 

3.3. Dataset description 

The U.S. Energy Information Administration (EIA) conducts the 
Residential Energy Consumption Survey (RECS) periodically to gather 
detailed information on energy usage in American households [48]. 
RECS is a comprehensive project that includes a household survey, data 
collection from energy suppliers, and estimation of end-use consump-
tion and expenditures. The survey gathers data on energy-related fea-
tures and usage patterns from a nationally representative sample of 
housing units. The energy supplier survey collects data on the con-
sumption of electricity, natural gas, propane/LPG, fuel oil, and kerosene 
in the sampled housing units during the reference year. RECS focuses on 
homes used as primary residences and excludes secondary homes, 
vacant units, military barracks, and common areas in apartment build-
ings. Consequently, RECS estimates are not meant to represent total 
sector-level figures but are particularly useful for comparing different 
characteristics of homes within the residential sector. 

Fig. 1. Our research methodology involving data curation, ML model training, 
and ML-based prediction for persona development. 
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The total number of responding households is 5686 in the 2015 
RECS. Each record includes a total of 759 attributes. These attributes 
have been categorized in 12 sections by EIA: • A: Structural Charac-
teristics – house type, construction time, renovation time, floor plan, 
building materials, etc. • B: Kitchen Appliances – kitchen stove, micro-
wave, stove fuels, oven, hood, ventilation, grill, refrigerator, freezer, 
dishwasher, etc. • C: Home Appliances and Electronics – clothes washer, 
dryer, washing cycle, television, gaming console, phone, computer, etc.  

• D: Space Heating – heating appliances, heater usage during winter, 
heating fuel, thermostat controls, hot water system, fireplace, etc. •
E: Air Conditioning – air conditioners, cooling systems, air condi-
tioning heat pump, air filter, programmable thermostat, thermostat 
control during summer days, etc. • F: Water Heating – water heaters 
types, fuels, usage, age, tank, etc.  

• G: Miscellaneous – light bulbs, swimming pool, energy audit, energy 
assistance, etc. • H: Fuels Used – back-up generator, onsite power 
system details, fuel usage in home, energy bills, natural gas usage in 
home, etc. • I: Housing Unit Measurement – size, shape and area of 
the different floors of the housing units. • J: Fuel Bills – fuel suppliers, 
bill types, different fuel bills like electricity, gas, wood, smart meter, 
etc.  

• K: Housing Unit Characteristics – occupants’ age, gender, education, 
employment status, number of people living in the household, in-
come, etc. 

• L: Energy Insecurity and Assistance – challenges paying bills, strug-
gles due to unsafe or unhealthy temperature, utility discontinuation, 
energy assistance, requirement of medication, etc. 

Fig. 2 illustrates the number of features in each of the 12 categories in 
pairs. For every pair, the left bar (colored in blue) refers to the original 
number of features in that category, and, the right bar (colored in or-
ange) refers to the number of features selected after the feature selection 
process. 16 of these attributes are chosen to be the target variables 
because they relate to individual occupant characteristics. The rest of 
the attributes remain as input variables. The next section discusses the 
feature selection process in detail. In the training process, the k-fold 
cross-validation is utilized with k = 10 dividing the 5686 records into 10 
random folds where 9 folds (5118 data points) were used for training 
and the remaining 1 fold of data (568 data points) was used for testing. 
The process is repeated 10 times to ensure the validity of the evaluation 
results. 

3.4. Pre-processing 

Data pre-processing is the process of transforming raw data into a 

machine-understandable format. It is a critical step in any machine- 
learning pipeline as it can have a significant impact on the perfor-
mance of the model. In many cases, the raw data used for machine 
learning may be incomplete, noisy, or contain errors. Sometimes, such 
noisy data make the model unusable. Pre-processing can help to clean 
and correct these issues, which can improve the accuracy of the model. 
This work utilizes the data from RECS 2015 dataset where most of the 
columns are ready to be directly fed to the machine learning models. 
However, there are some columns that contain infinite, missing, blank, 
and, null values. For machine learning models to understand all records, 
these values needed to be transformed. The following are the different 
pre-processing steps done in this work. 

3.4.1. Missing, null, InF values 
Some of the data records contained missing or blank values. Some 

records had null values. These missing, blank, and, null values have been 
replaced with − 1 to establish the value is missing. Some rows included 
infinite values written as’inf’ instead of a number. These records are 
particularly difficult to process by the machine learning models because 
the model expects all values of a particular column to be of the same data 
type. Having both numbers and text or string on the same column pro-
vides a mixed signal to the machine learning pipeline. The infinite 
values have been replaced with a large enough number, i.e. the largest 
integer in the programming language Python. 

3.4.2. Age classification 
The target variable, HHAGE ((SL. 9 on Table 1)) which refers to the 

age of the responding occupant, is continuous from 18 to 110. Previous 
studies [49,50] used age groups instead of continuous age numbers in 
years which is more feasible in machine learning classification tasks. 
This study follows the age range used in [50]. The records are catego-
rized in the following age groups (in years): Children (0 to 12), Young 
Adult (13 to 30), Middle Adult (31 to 50), Senior Adult (51 to 70), and 
Senior (71 to 110). Fig. 3 illustrates the histogram of the occupant age 
data before (left) and after (right) the pre-processing step. On the left, 
the data is distributed across 18 to 110 years. On the right, there are only 
4 bars representing each age group. As the occupant age data starts from 
18 years, there are no records in the Children age group (0 to 12 years). 

3.4.3. Temperature classification 
The temperature attributes (SL. 3 to 8 on Table 1) are in a continuous 

form representing temperature records in degree Fahrenheit (◦F). 
Similar to the age group, it is preferable to use regression models for 
continuous numbers. In the case of a classification task, it is better to 
have groups or classes of numbers. In the RECS 2015 dataset, the tem-
perature data in all 6 target columns range from 40 to 96 ◦F. As an 
example of the data distribution of the temperature records, the left side 
of Fig. 4 illustrates the histogram of the attribute TEMPGONE which 
represent the temperature data when no one is at home during the 
winter days. The other temperature attributes demonstrate similar 
characteristics. Here, it can be observed that most of the data fall be-
tween 50 and 80 ◦F. However, there is a peak on 0 ◦F. This portion 
represents missing or null data. The continuous temperature data is then 
distributed in 7 groups. Details of these groups can be found on SL. 3 of 
Table 1. All temperature attributes have been categorized following the 
same distribution. This categorization is more feasible for machine 
learning classification tasks. In this way, machine learning models are 
used to predict a temperature group for a particular input instead of 
identifying the exact temperature value. On the right side of Fig. 4 the 
histogram after the processing of TEMPGONE attribute is shown. Here, it 
can be seen that most of the data lie in groups 4 and 5 which represent 65 
to 68◦F and 69 to 72◦F respectively. 

3.5. Feature selection 

Feature selection is an important step in the performance of effective Fig. 2. Feature distribution in categories.  
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Table 1 
Target attribute details.  

SL. Attribute 
Name 

Description Data Range # of 
classes 

Class Details 

1 EQUIPMUSE Main heating equipment control description 1 to 5, & 9 6 1: Set one temperature and leave it there most of the time 2: 
Manually adjust the temperature at night or when no one is 
at home 
3: Program the thermostat to automatically adjust the 
temperature during the day and night at certain times 
4: Turn equipment on or off as needed 
5: Our household does not have control over the equipment 
9: Other 

2 USEWWAC Main cooling equipment control description 1 to 5, &, 9 6 Same as 1 (EQUIPMUSE)  
3 TEMPHOME Typical temperature when someone is at home during the 

winter days 
40 to 96 ◦F 7 1: 40 to 50 ◦F 

2: 51 to 60 ◦F 
3: 61 to 64 ◦F 
4: 65 to 68 ◦F 

5: 69 to 72 ◦F 
6: 73 to 76 ◦F 
7: 77 to 96 ◦F 

4 TEMPGONE Typical temperature when no one is at home during the 
winter days 

40 to 96 ◦F 7 Same as 3   

5 TEMPNITE Typical temperature when someone is at home during the 
winter nights 

40 to 96 ◦F 7 Same as 3 (TEMPHOME)   

6 TEMPHOMEAC Typical temperature when someone is at home during the 
summer days 

40 to 96 ◦F 7 Same as 3 (TEMPHOME)   

7 TEMPGONEAC Typical temperature when no one is at home during the 
summer days 

40 to 96 ◦F 7 Same as 3 (TEMPHOME)   

8 TEMPNITEAC Typical temperature when someone is at home during the 
summer nights 

40 to 96 ◦F 7 Same as 3 (TEMPHOME)   

9 HHAGE Age of the respondent 18 to 110 
years 

5 1: 
2: 
3: 

Children (0 to 12) 
Young Adult (13 to 
30) 
Middle Adult (31 to 
50) 

4: 
5: 

Senior Adult(51 to 
70) 
Senior (71 to 110) 

10 EMPLOYHH Employement Status of the respondent 1 to 4 4 1: 
2: 

Employed full-time 
Employed part-time 

3: 
4: 

Retired 
Not employed 

11 EDUCATION Highest degree or level of school completed by the 
respondent 

1 to 5 5 1: 
2: 
3: 
4: 

Less than high school diploma or GED 
High school diploma or GED 
Some college or Associate’s degree 
Bachelor’s degree (e.g.: BA, BS)      

5: Master’s or higher degree (e.g.: MS, MBA, MD, PhD) 
12 NHSLDMEM Number of people living in the home 1 to 20 20 Each number of people is converted into a class itself 
13 NUMADULT Number of adults living in the home 1 to 20 20 Each number of people is converted into a class itself 
14 NUMCHILD Number of children living in the home 1 to 20 20 Each number of people is converted into a class itself 
15 ATHOME Number of weekdays someone is at home 0 to 5 6 0: None 

1: 1 day 
2: 2 days 

3: 3 days 
4: 4 days 
5: 5 days 

16 MONEYPY Combined household income (USD) 1 to 16 16 1: Less than 5,000 
2: 5,000–7,499 
3: 7,500–9,999 
4: 10,000–12,499 
5: 12,500–14,999 
6: 15,000–19,999 
7: 20,000–24,999 
8: 25,000–29,999 

9: 30,000–34,999 
10: 35,000–39,999 
11: 40,000–49,999 
12: 50,000–59,999 
13: 60,000–74,999 
14: 75,000–99,999 
15: 100,000–149,999 
16: 150,000 or more  

Fig. 3. Histogram of occupant age data before (left) and after (right) pre-processing step.  
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machine learning models. It involves selecting a subset of the most 
relevant features (or variables) from a larger set of available features 
that are likely to have the most predictive power for the target variable. 
This process can lead to better model performance, faster training times, 
avoiding over-fitting, and, more interpretable models. 

The RECS 2015 dataset includes a total of 759 columns each repre-
senting an attribute. The authors went through a manual inspection of 
each of the features to identify the features that are important in the 
occupant characteristics prediction and the features that can be removed 
to reduce the total number of features to feed the machine learning 
models. A total of 370 attributes were dropped through the manual 
feature selection process leaving 389 attributes for the target and 
training features. 

The RECS 2015 dataset included imputation flags for most of the 
attributes which refer to whether a record was imputed or not. A record 
can be imputed if it is not directly obtained from the occupants, but it is 
observed from other sources such as the structure, surrounding, or 
measuring device. Either way, in this work, the imputation flag is not a 
necessary component. Hence, the imputation flags are dropped. There 
were a total of 217 imputation flag attributes. 

The energy consumption attributes recorded in the dataset contained 
both energy units and corresponding costs in US dollars. The dollar 
amounts are not in the scope of this study and thus are dropped from the 
dataset. There were a total of 53 dollar amount attributes. The data also 
included replicated weights which are used for variance estimation. 
These attributes were also not in the scope of this study and thus a total 
of 97 replicated weight attributes were dropped from the dataset. 

Each record in the dataset was given an ID represented in the first 
column named DOEID. The ID is unique to each record and unnecessary 
in the classification task. It was dropped in the selection process. Finally, 
there were 2 attributes representing the number of phones and cell-
phones. These 2 columns have a direct correlation with the number of 
occupants living in the household which is one of the characteristics this 
work aims to estimate. Thus these 2 attributes were also dropped from 
the dataset. 

Each of the 759 attributes were manually examined in this study and 
a total of 370 features were dropped in the manual feature selection 
process which includes imputation flags, utility bills in US dollar amount 
(actual unit is kept), and replicated weights (used for variance estima-
tion), ID, and, phone counts. These are safe to drop because they do not 
represent any data that might affect the output of the machine-learning 
models for developing building occupant personas. The orange bars in 
Fig. 2 (right bar of each category pair) represent the number of features 
selected for the training models. The remaining 389 attributes include 
features from all the categories of the initial dataset. After cautious ex-
amination of these 389 features, 16 target features were selected. More 
details on the target features are provided in the next section. Leaving 
the target features aside, there remains a total of 373 attributes which 
were kept as the input variables of the machine-learning models. This 

study utilized all of the remaining 373 features as inputs of the machine- 
learning models. 

3.6. Target variables 

The authors examined the remaining 389 attributes after the feature 
selection step to identify the target variables. This study centers around 
the chosen residential energy consumption dataset [48]. Selecting the 
target variables in a classification task is a critical step in any machine 
learning research. 

The target attributes needed to be identified manually from this 
dataset of 389 attributes. The investigation of the dataset for identifying 
the targets was conducted individually by the authors which was fol-
lowed by a census of all authors based on their domain knowledge. The 
features that aid in the behavior and characterization of individual oc-
cupants were selected throughout the manual exhaustive investigation 
of all attributes present in the dataset. A total of 16 attributes were found 
that actively relate to occupant characteristics. These attributes can 
provide key information in developing building occupant persona. 
Table 1 provides a detailed overview of these 16 target attributes. The 
first column (SL.) is a regular serial number of these variables, the sec-
ond column (Attribute Name) denotes the respective target variable, the 
third column (Description) provides a description of the attribute, the 
fourth column (Data Range) represents the range span of the data of the 
respective attribute, the fifth column (# of classes) denotes the total 
number of classes present in that attribute, and, the last column (Class 
Details) provides detail information of the classes present in the 
particular target attribute. The following are the 16 target variables 
selected for this study: • EQUIPMUSE: Main heating equipment house-
hold behavior, including values such as setting one temperature and 
leaving it there most of the time; manually adjusting the temperature at 
night or when no one is at home; programming the thermostat to 
automatically adjust the temperature during the day and night at certain 
times; turn equipment on or off as needed, etc. The datapoints are 
distributed in 6 classes. The class details can be found on the first row of 
Table 1.  

• USEWWAC: Most-used individual air conditioning unit household 
behavior including values, such as setting one temperature and 
leaving it there most of the time; manually adjusting the temperature 
at night or when no one is at home; programming the thermostat to 
automatically adjust the temperature during the day and night at 
certain times; turn equipment on or off as needed, etc. Similar to 
EQUIPMUSE, the data points are categorized in 6 classes.  

• TEMPHOME: Winter temperature when someone is at home during 
the day. The values range from 50 to 90◦Fahrenheit. The tempera-
ture attributes have been processed in the pre-processing step. The 
processed data falls into 7 classes. The class details can be found on 
row 3 of Table 1. • TEMPGONE: Winter temperature when no one is 

Fig. 4. Histogram of TEMPGONE before (left) and after (right) pre-processing step.  
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at home during the day with the value range of 50 to 90◦Fahrenheit. 
It was also processed in the pre-processing step to distribute the data 
into 7 classes. Class distribution is the same as TEMPHOME. •
TEMPNITE: Winter temperature at night with the value range of 50 
to 90◦Fahrenheit. A similar processing step has been followed here 
with 7 classes. • TEMPHOMEAC: Summer temperature when some-
one is at home during the day with the value range of 50 to 
90◦Fahrenheit. The same temperature processing was conducted in 
this attribute and the data was distributed into 7 classes.  

• TEMPGONEAC: Summer temperature when no one is at home during 
the day with the value range of 50 to 90◦Fahrenheit. Similar to the 
other temperature attributes, this one was also processed and the 
data is classified into 7 classes.  

• TEMPNITEAC: Summer temperature at night with the value range of 
50 to 90◦Fahrenheit. A similar processing step has been followed 
here with 7 classes. • HHAGE: Respondent age, values ranging from 
18 to 110. This attribute was processed in the pre-processing step and 
the data has been classified into 5 classes, from children to seniors. 
The class details are provided in Table 1. • EMPLOYHH: Respondent 
employment status. Values covering employed full-time, part-time 
and unemployed or retired. Data is classified into 4 classes, starting 
from 1 to 4. • EDUCATION: Highest education completed by the 
respondent. Replies cover less than high school diploma or GED, high 
school diploma or GED, some college or associate’s degree, bache-
lor’s degree (for example: BA, BS), master’s, professional, or 
doctorate degree (for example: MA, MS, MBA, MD, JD, PhD). Data is 
distributed in 5 classes ranging from 1 to 5. Detailed class distribu-
tion can be found on row 11 of Table 1.  

• NHSLDMEM: Number of household members, values ranging from 1 
to 20. Each occupant number was automatically considered as a class 
by the machine learning models thus making the total number of 
classes to 20 for this attribute.  

• NUMADULT: Number of household members age 18 or older, values 
ranging from 1 to 20. Again, each occupant number was automati-
cally considered as a class by the machine learning models thus 
making the total number of classes 20 for this attribute. • NUM-
CHILD: Number of household members age 17 or younger, values 
ranging from 1 to 20. Similar to the other attribute featuring occu-
pant number, this attribute also contains 20 classes each representing 
a number between 1 and 20.  

• ATHOME: Number of weekdays someone is at home. The values 
range from 0 to 5, creating a total of 6 classes.  

• MONEYPY: Annual gross household income for the previous year. 
The data is distributed in 16 classes ranging from less than 5,000 USD 
to more than 150,000 USD. Detailed class distribution can be found 
on row 16 of Table 1. 

These target attributes were chosen to describe different occupant 
characteristics. Together, these attributes can provide information on 
the age, lifestyle, behavior, family size, income, education, and, thermal 
comfortability of the occupants. The goal of this study is to see if we can 
predict these occupant characteristics from the selected 373 input fea-
tures that contain respective information on energy usage, housing type, 
kitchen appliances, electronics usage, heating, and, cooling elements. If 
the models can successfully predict the target occupant characteristics 
from these selected input features, it can benefit in identifying the needs 
of particular residents from the data of their current household. 

3.7. Machine learning models 

Classification is a supervised learning approach in which a target 
variable is categorical or discrete. 

The task of choosing a specific classification model is a critical step 
[51], and each model has its own strengths and weaknesses in a given 
scenario. There is no cut-and-dried flowchart that can be used to 
determine which model should be used or will outperform the rest. A 

simple example can be, back propagation neural networks achieve 
higher accuracy than the decision tree method on Iris and Appendicitis 
data but a lower accuracy on Breast cancer and Thyroid data [52,47]. 
The comparison of classifiers is important for both academic and in-
dustrial fields [53]. In the StatLog project, King et al. [54] compared 
multiple classification algorithms including KNN, NB, LR, and, NN on 
large real-world problems. Their results indicate that the performance 
depends critically on the data set investigated and there is no single best 
algorithm. This argument is in accordance with the No-Free-Lunch 
theorem [55], which states that the best classifier will not be the same 
for all the data sets. Following prior works [56–58], this work in-
vestigates the well-known state-of-the-art classification algorithms ac-
cording to the guide provided by Pedregosa et al. [59]. In this work, six 
machine learning models have been used parallelly on the library rec-
ommended settings [59]. The following are the classification models 
used in this work: 

3.7.1. Linear discriminant analysis (LDA) 
Linear Discriminant Analysis (LDA) is a supervised learning algo-

rithm used for classification tasks [59]. It is a technique used to find a 
linear combination of features that best separates two or more classes of 
objects or events. It can be used to classify data into different categories 
based on their features. It is a linear model for classification and is most 
commonly used for feature extraction in pattern classification problems. 
It is used in finding the projection hyper-plane that minimizes the inter- 
class variance and maximizes the distance between the projected means 
of the classes [60]. 

In LDA, it is assumed that the classes have the same covariance 
matrix and that the data is normally distributed. The goal is to find a 
projection of the data onto a lower-dimensional space, that is, a sub-
space such that the different classes are well separated and the intra- 
class variance is minimized. This projection is obtained by finding the 
eigenvectors of the between-class scatter matrix and the within-class 
scatter matrix. The between-class scatter matrix measures the varia-
tion between different classes, while the within-class scatter matrix 
measures the variation within each class. The eigenvectors of the 
between-class scatter matrix and the within-class scatter matrix are used 
to construct a transformation matrix that maps the data to a new sub-
space. In the new subspace, each sample is represented by a new set of 
features, which are called discriminant functions. These functions can be 
used to classify new data points by assigning them to the class with the 
highest score. This study used the LDA model with its default parameters 
[59]. The solver parameter was set to”svd” indicating Singular value 
decomposition (default). This is recommended for data with a large 
number of features which is the case of this study. 

3.7.2. K nearest neighbors classifier (KNN) 
K nearest neighbors classifier (KNN) is also a supervised machine 

learning algorithm used for classification tasks [59]. It is a non- 
parametric method, which means it does not make any assumptions 
about the underlying distribution of the data. Instead, it uses the nearest 
neighbors of a new data point to predict its class. The k-NN algorithm is 
among the simplest and yet most efficient classification rules and is 
widely used in practice [61]. 

The KNN algorithm works by finding the K training examples that are 
closest to a new test example in terms of some distance metric, for 
example, Euclidean distance, and, cosine distance. The value of K is a 
hyperparameter that differs in different tasks. Once the K nearest 
neighbors are identified, the algorithm assigns the new test example to 
the class that is most common among its K nearest neighbors. One of the 
strengths of KNN is that it can handle non-linear decision boundaries 
and can be applied to both binary and multi-class classification problems 
which is the case of this study. In this study, the parameter n neighbors 
(also referred to as K) was set to 5. This is also the default recommended 
value of the parameter. 
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3.7.3. Decision tree classifier (CART) 
Decision Tree Classifier (CART) is another supervised learning al-

gorithm used for classification and regression tasks. It is a tree-based 
model that works by recursively partitioning the feature space into re-
gions, each of which is associated with a class label or a continuous 
target value [62]. The CART algorithm builds a binary tree in which 
each internal node corresponds to a decision rule based on the value of a 
single feature. The decision rule splits the data into two or more subsets 
based on a threshold value or a set of categorical values. Each leaf node 
of the tree corresponds to a predicted class or target value. To build a 
decision tree, the CART algorithm uses a greedy approach that maxi-
mizes the information gain or the Gini impurity [63] at each split. In-
formation gain measures the reduction in entropy (or some other 
measure of uncertainty) of the target variable, while Gini impurity 
measures the probability of misclassification if a random example is 
assigned to a particular class. In this work, the Gini impurity parameter 
was used as criteria for the split with the splitter strategy set to”best”. 

The CART algorithm can be used for both binary and multi-class 
classification problems, as well as for regression tasks. As the tasks 
related to this study are multi-class classification, CART remains a good 
fit. It is a simple and interpretable model that can handle both cate-
gorical and continuous features, and, can capture non-linear relation-
ships between the features and the target variable. 

3.7.4. Support vector machine (SVM) 
Support vector machine (SVM) is a popular supervised learning al-

gorithm used for classification, regression, and outlier detection tasks 
[64]. SVM aims to find the hyperplane that best separates the examples 
of different classes in a high-dimensional feature space. The basic idea of 
SVM is to map the input data points into a high-dimensional feature 
space using a kernel function, and then find the hyperplane that maxi-
mizes the margin between the two closest examples of different classes. 
The examples that are closest to the hyperplane are called support 
vectors, and they determine the position and orientation of the 
hyperplane. 

SVM can handle both linearly separable and non-linearly separable 
data by using different kernel functions, such as linear, polynomial, and 
radial basis function (RBF) kernels. The default choice of kernels, RBF is 
used in this study. One of the strengths of SVM is its ability to handle 
high-dimensional data and small sample sizes, which makes it suitable 
for a wide range of applications. It can also handle imbalanced datasets 
by adjusting the class weights or using cost-sensitive learning. Another 
advantage of SVM is its ability to provide a sparse solution, meaning that 
only a subset of the examples (i.e., the support vectors) are used to 
define the hyperplane, which can improve its scalability and 
interpretability. 

3.7.5. AdaBoost classifier (ADB) 
AdaBoost Classifier (ADB) is a machine learning algorithm that be-

longs to the family of ensemble methods. It is a meta-algorithm that 
combines multiple weak classifiers to form a strong classifier. The basic 
idea behind AdaBoost is to iteratively train a series of weak classifiers on 
weighted versions of the training data, and then combine their pre-
dictions to obtain the final classification [65,66]. At each iteration, 
AdaBoost adjusts the weights of the training examples to give more 
importance to the misclassified examples. The weak classifier is then 
trained on the weighted data and added to the ensemble with a weight 
that depends on its classification accuracy. The weights of the examples 
are then updated again based on the classification errors of the current 
ensemble, and the process is repeated for a predefined number of iter-
ations or until a desired accuracy is achieved. The base estimator 
parameter was set to Decision Tree Classifier with max depth = 1 which 
is the default. The number of estimators parameter was set to 50 by 
default. 

One of the strengths of AdaBoost is its ability to improve the per-
formance of weak classifiers and handle complex decision boundaries. It 

can also handle imbalanced datasets and noisy data, by adjusting the 
weights of the examples and focusing on the difficult examples. Another 
advantage of AdaBoost is its simplicity and interpretability, as it com-
bines simple and easily understandable models to form a more complex 
and accurate model. 

3.7.6. Random forest classifier (RFC) 
Random forest classifier (RFC) is a machine learning algorithm that 

belongs to the family of ensemble methods. It is a meta-algorithm that 
combines multiple decision trees to form a powerful and robust classi-
fier. The basic idea behind Random Forest is to build a collection of 
decision trees on randomly selected subsets of the training data, and 
then combine their predictions to obtain the final classification [67]. At 
each iteration, Random Forest randomly selects a subset of the features 
and a subset of the training features, and, trains a decision tree on the 
selected data. The trees are grown to maximum depth and may be 
pruned later to improve their generalization performance. The pre-
dictions of the individual trees are then combined using a majority vote 
or weighted vote, depending on the specific implementation. In this 
study, the number of estimators in RFC which denotes the number of 
trees in the forest was set to 100. The random state parameter was set to 
0 which controls both the randomness of the bootstrapping of the 
samples used when building trees and the sampling of the features to 
consider when looking for the best split at each node. 

One of the strengths of Random Forest is its ability to handle complex 
decision boundaries and nonlinear relationships between the features 
and the target variable. It can also handle missing data, outliers, and 
irrelevant features, by randomly selecting subsets of the features. 
Another advantage of Random Forest is its ability to provide estimates of 
the importance of the features, which can help in feature selection and 
understanding the underlying data. It can also be easily parallelized and 
scaled to large datasets and distributed computing environments. 

4. Evaluation 

The evaluation of the machine learning models plays a crucial role in 
assessing the performance of the classification models. Employing 
appropriate evaluation settings and metrics, analyzing performance 
scores, and, identifying key findings can draw meaningful conclusions 
about the model’s effectiveness and its relevance to the research ob-
jectives. The evaluation section forms an essential component of the 
study, contributing to the overall understanding and interpretation of 
the classification model’s performance. This section provides insights 
into the model’s performance by employing evaluation settings and 
metrics. It also discusses the obtained performance scores, key findings, 
and, the answer to the research question posed in this study. 

4.1. Experiment settings 

Machine learning classification models are evaluated using various 
settings and metrics to assess their performance and effectiveness. In this 
study, 6 machine learning models were evaluated in a 10-fold cross- 
validation setting. The total number of records present in the dataset 
is 5686. During the process, 5118 records were used in the training 
process and 586 records were used for the evaluation at each of the 10- 
folds. At every iteration, the data were randomly shuffled. 

4.2. Evaluation metrics 

The models were evaluated with the most common classification 
evaluation metrics used by scholars [68]. The evaluation metrics used in 
this study are accuracy (A), precision (P), recall (R), and, f1score (F). 
Classification accuracy is a performance metric used to measure the 
accuracy of a machine learning model in predicting categorical out-
comes [69]. It is the proportion of correct predictions made by the model 
out of all the predictions made. Classification accuracy of the developed 
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models on unseen data is one of the principal metrics for evaluating 
classification models. The following formula has been used to determine 
classification accuracy: 

Accuracy(A) =
NumberofCorrectPredictions
TotalNumberofPredictions

(1) 

In machine learning classification tasks, precision is another impor-
tant performance metric [69] that measures the ability of a classification 
model to identify only the relevant instances of a particular class in a 
particular dataset. More specifically, precision is the proportion of true 
positives (i.e., instances that are correctly classified as belonging to a 
certain class) out of all the instances that the model classified as 
belonging to that class (i.e., true positives plus false positives). In 
mathematical terms, it can be expressed as: 

Precision(P) =
TruePositives

TruePositives + FalsePositives
(2) 

Precision is an important metric in many realworld applications, 
especially to avoid falsely labeling instances as belonging to a certain 
class. It is generally used in conjunction with recall to get a better un-
derstanding of the model’s performance. Recall is another important 
performance metric in machine learning classification tasks [69]. It 
measures the ability of a classification model to identify all relevant 
instances of a particular class in the dataset. More specifically, recall is 
the proportion of true positives (i.e., instances that belong to a certain 
class and are correctly classified as such) out of all the instances that 
actually belong to that class (i.e., true positives plus false negatives). In 
mathematical terms, it can be expressed as: 

Recall(R) =
TruePositives

TruePositives + FalseNegatives
(3) 

F1-score is another performance metric that combines both precision 
and recall into a single metric. It provides a way to balance the two 
metrics and evaluate the overall performance of a classification model. 
The F1-score is calculated as the harmonic mean of precision and recall, 
giving equal weight to both measures. The harmonic mean balances the 
impact of precision and recall, ensuring that the F1score remains high 
only if both precision and recall are high. The F1-score is calculated as: 

F1 − score(F) = 2 ×
Precision × Recall
Precision + Recall

(4)  

4.3. Model performances 

Table 2 shows the combined minimum and maximum Accuracy (A), 
F1-score (F), Precision (P), and, Recall (R) obtained by the machine 
learning models over 10-fold cross-validation process for the 16 target 

variables. The target features are placed in the left-most column fol-
lowed by the minimum and maximum results obtained in all 4 evalua-
tion metrics by the classification models. These results span over all 10- 
folds and 6 machine learning models, thus a larger gap between the 
minimum and maximum values can be observed. The weighted average 
has been used in the calculation of precision, recall, and, F1-score as this 
study deals with multi-class classification tasks. Precision measures the 
accuracy of positive predictions, while recall measures the completeness 
of positive predictions. High precision and high recall are desirable, but 
there may be a trade-off between the two metrics in some cases. Preci-
sion evaluates the correctness of positive predictions, whereas recall 
assesses the inclusiveness of positive predictions. Ideally, both high 
precision and high recall are preferred; however, there can be instances 
where there is a trade-off between these two metrics. The F1-score is a 
measure of a model’s accuracy that considers both precision and recall. 
The maximum accuracy, precision, recall, and, F1-score of 100% was 
observed in the case of the 3 target variables indicating the number of 
household members (NHSLDMEM), number of adults (NUMADULT), 
and, number of children (NUMCHILD) in the house indicating the ma-
chine learning models performed best in classifying these characteris-
tics. The lowest accuracy, precision, recall, and, F1-score were obtained 
for the gross household income (MONEYPY) which yields the machine 
learning models didn’t perform well in classifying this particular 
feature. It also indicates that the gross income of a household doesn’t 
rely on the selected input features of this study. Low precision of 10% 
was observed in classifying average room temperature during summer 
nights (TEMPNITEAC) and summer days when no one is at home 
(TEMPGONEAC). The highest precision for these features are 67% and 
69% respectively. This indicates that some models performed poorly in 
classifying these two target features however some models performed 
above average in classifying these characteristics as there are 7 classes of 
data in each of these features. 

Table 3 reveals the average accuracy obtained by each classification 
model during the 10-fold cross-validation process over the 16 target 
variables. The targets are positioned in the left-most column, followed 
by the average accuracy obtained by the six classification models. The 
right-most column shows the mean accuracy obtained for the respective 
target feature. The best average score for each target is highlighted in 
bold numbers. Across all 16 target variables, CART, LDA, and, RFC 
classifiers achieved the highest average accuracy (63%). KNN and SVM 
achieved the lowest average accuracy (42%). CART and LDA achieved 
over 95% average accuracy for 3 target variables which are the number 
of household members (NHSLDMEM), number of adults (NUMADULT), 
and, number of children (NUMCHILD). Most of the models also obtained 
above 75% accuracy for classifying main cooling equipment control 
behavior (USEWWAC). The average accuracy among all the models for 

Table 2 
Accuracy (A), F1-score (F), Precision (P), and, Recall (R) obtained across the target variables.  

Metrics A F P R 
Target Min Max Min Max Min Max Min Max 

ATHOME  0.41  0.60  0.38  0.51  0.31  0.57  0.40  0.60 
EDUCATION  0.25  0.45  0.17  0.41  0.11  0.48  0.25  0.45 
EMPLOYHH  0.46  0.75  0.31  0.72  0.23  0.76  0.46  0.75 
EQUIPMUSE  0.33  0.69  0.21  0.68  0.14  0.69  0.33  0.69 
HHAGE  0.38  0.65  0.21  0.64  0.15  0.68  0.38  0.65 
MONEYPY  0.19  0.37  0.08  0.35  0.05  0.35  0.19  0.37 
NHSLDMEM  0.37  1.00  0.20  1.00  0.13  1.00  0.37  1.00 
NUMADULT  0.54  1.00  0.38  1.00  0.30  1.00  0.54  1.00 
NUMCHILD  0.65  1.00  0.54  1.00  0.46  1.00  0.65  1.00 
TEMPGONE  0.30  0.61  0.20  0.59  0.13  0.59  0.30  0.61 
TEMPGONEAC  0.29  0.67  0.15  0.68  0.10  0.69  0.29  0.68 
TEMPHOME  0.33  0.65  0.24  0.63  0.17  0.65  0.33  0.65 
TEMPHOMEAC  0.29  0.69  0.13  0.68  0.09  0.70  0.29  0.69 
TEMPNITE  0.31  0.62  0.18  0.61  0.12  0.64  0.31  0.62 
TEMPNITEAC  0.28  0.66  0.15  0.65  0.10  0.67  0.28  0.66 
USEWWAC  0.71  0.89  0.64  0.87  0.57  0.87  0.71  0.89  
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USEWWAC is 82% meaning the models performed moderately well in 
classifying this feature. The models achieved more than 50% accuracy 
for all target variables except 2 which are the level of education (EDU-
CATION) and the total household income (MONEYPY) where the 
average accuracy obtained by the models are 35% and 28% respectively. 
The data in MONEYPY is distributed in 16 classes which is almost double 
compared to the other targets. This might answer the lower accuracy, 
however, the data in EDUCATION is distributed in only 5 classes and this 
does not support the previous claim. A more concrete reason can be the 
level of education and gross household income may not depend on the 
energy usage and housing detail input variables. Here, education refers 
to the education of individual occupants (RECS survey respondents) and 
MONEYPY is the gross household income. It is plausible that these two 
characteristics are independent of the chosen input variables in this 
study. 

4.4. Answer to the research questions 

Analysis of the results obtained by the machine learning models 
provides multiple insights that can help answer the research questions 
poised in section 1. These findings can elaborate on the effectiveness of 
using ML models in the task of predicting building occupant 
characteristics. 

RQ1: How effectively can machine learning tools predict individual 
building occupant characteristics? 

Understanding the effectiveness of using machine learning tools in 
predicting individual building occupant characteristics is crucial as it 
explains the usability and feasibility of the task. The evaluation results 
can benefit in understanding the effectiveness of using the machine 
learning tools of this study. This work incorporates 6 state-of-the-art 
machine learning models for 16 selected occupant characteristics clas-
sification and prediction tasks. From the performance measures pre-
sented in Table 2, it can be deduced that the machine learning models 
performed efficiently in the task. The models performed significantly 
well for 4 occupant characteristics and moderately well for 10 charac-
teristics. The models obtained belowaverage accuracy in classifying 2 
characteristics (education and income) which in itself is a finding 
denoting these characteristics may not depend on the energy usage and 
selected housing features. 

From Table 2 it is clear that the performance of the machine learning 
models varied over the 16 target variables. The ML models obtained 
different accuracy, precision, recall, and, f1-scores for the different 
occupant characteristics. The 16 target attributes of this work can be 
separated into 3 categories, (i) Temperature preference and equipment 
control, (ii) Household characteristics, and, (iii) Individual character-
istics. The ML models achieved different effectiveness in these 3 

categories. The following is a description of the machine learning model 
performances over these categories:  

(i) Temperature preference and equipment control: Targets 1 
through 8 of Table 1 fall in this category. It includes temperature 
preferences during winter and summer along with the usage of 
heating and cooling equipments. These attributes represent the 
entire household but are specific to temperature control. The 
temperature preference attributes achieved an average accuracy 
of 50%. The data in these variables are distributed in 7 categories 
which makes 50% a moderately good number for accuracy. The 
accuracy scores among these variables also do not vary more than 
3 which makes sense with the same input features. Surprisingly, 
the classification of the usage of the main cooling equipment 
during the summer (USEWWAC) achieved significantly better 
average accuracy (82%) than the classification of the usage of the 
main heating equipment (EQUIPMUSE) during the winter (52%). 
The random forest classifier (RFC) achieved highest accuracy in 
both of these target labels (88% for USEWWAC and 66% for 
EQUIPMUSE). This result indicates that the input features may 
provide more correlating information towards cooling equipment 
usage than heating equipment usage.  

(ii) Household characteristics: Targets 12 to 16 of Table 1 fall in this 
category. It includes the number of household members, number 
of adults, number of children, number of days, someone present 
at home, and, the combined household income. These attributes 
represent the entire household. The target attributes related to 
the number of people performed surprisingly well. The decision 
tree classifier achieved 99% accuracy in all three. It can be 
deduced that these variables have a high correlation with the 
input features present in the dataset. The input features like en-
ergy consumption, and, housing structure like number of bed-
rooms, total area, etc. can tell a lot about the number of habitats 
present. However, the machine learning models did not perform 
well in classifying the number of weekdays some is present at 
home (ATHOME) and the combined household income (MON-
EYPY) achieving an average accuracy of 51% and 28% respec-
tively. The random forest classifier achieved the highest accuracy 
in these two variables (57% and 35% respectively). It can be the 
case that these variables are independent of the input features 
present in the dataset.  

(iii) Individual characteristics: Targets 9 to 11 of Table 1 fall in this 
category. It includes the age, employment status, and, level of 
education of the respondent. These attributes represent the in-
dividual who responded to the survey questionnaire. The ma-
chine learning models achieved an average accuracy of 51% for 
the respondent’s age, 61% for the employment status of the 
respondent, and, 35% for the level of education of the respon-
dent. These results indicate that the correlating input features 
were not enough for the machine learning model to classify these 
target attributes. These variables are solely about independent 
respondents and not the entire household however most of the 
input variables in this work represent the entire housing unit. 
This makes it difficult for machine learning models to classify 
individual occupant characteristics from household data. 

RQ2: How do machine learning algorithms compare with each other when 
predicting building occupant characteristics? 

The comparison of the machine learning algorithms for any classi-
fication or prediction task is very important as it facilitates performance 
evaluation, model selection, optimization, interpretability, and, under-
standing of model behavior. It helps to make informed decisions, 
improve performance, and gain insights into the classification task and 
the models’ characteristics. For comparing machine learning classifica-
tion models, factors like accuracy, precision, recall, and, F1-score are 
typically considered to assess the performance and determine which 

Table 3 
Average accuracy of the machine learning models over 10-fold validation 
process.  

Models ADB CART KNN LDA RFC SVM Mean 

ATHOME  0.58  0.43  0.43  0.54  0.57  0.55  0.52 
EDUCATION  0.38  0.3  0.28  0.40  0.40  0.33  0.35 
EMPLOYHH  0.71  0.61  0.48  0.70  0.71  0.48  0.62 
EQUIPMUSE  0.55  0.61  0.37  0.60  0.66  0.38  0.53 
HHAGE  0.59  0.52  0.40  0.59  0.61  0.38  0.52 
MONEYPY  0.34  0.26  0.21  0.31  0.35  0.22  0.28 
NHSLDMEM  0.37  0.99  0.53  0.96  0.76  0.37  0.66 
NUMADULT  0.77  0.99  0.64  0.96  0.77  0.54  0.78 
NUMCHILD  0.69  0.99  0.67  0.97  0.75  0.68  0.79 
TEMPGONE  0.56  0.51  0.32  0.51  0.55  0.37  0.47 
TEMPGONEAC  0.47  0.63  0.31  0.58  0.64  0.31  0.49 
TEMPHOME  0.55  0.60  0.37  0.55  0.63  0.41  0.52 
TEMPHOMEAC  0.56  0.66  0.32  0.62  0.67  0.30  0.52 
TEMPNITE  0.58  0.54  0.33  0.50  0.58  0.35  0.48 
TEMPNITEAC  0.57  0.61  0.30  0.53  0.63  0.31  0.49 
USEWWAC  0.86  0.85  0.74  0.83  0.88  0.76  0.82  
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model is better suited for the task. The models used in this study are the 
most commonly used machine learning classification models used by 
scholars [69,59]. Even though the same input and output features were 
provided to each model, the evaluation results significantly varied. 
Analyzing Table 3 and Table 4 can provide insights on the performance 
comparison among the machine learning tools used in this study. 

Table 3 shows the average Accuracy obtained by each model. 
Overall, the random forest classifier (RFC), the decision tree classifier 
(CART), and, the linear discriminant analysis classifier (LDA) are tied in 
the first position with an average accuracy of 63%. However, RFC out-
performed the rest by achieving the best accuracy for 9 out of 16 target 
variables. The reason behind the success of RFC can be the resource-
fulness for making accurate predictions needed in strategic decision- 
making. The Adaboost classifier (ADB) can be placed in the second po-
sition as it achieved the best accuracy for 4 out of 16 target variables. 
The decision tree classifier achieved the highest accuracy of 99% for 3 of 
the target variables. Both K nearest neighbor classifier (KNN) and sup-
port vector machine classifier (SVM) scored an average of 42% overall 
accuracy. 

Table 4 shows the average Precision (P), Recall (R), and, F1-score (F) 
obtained by the six machine learning models throughout the 10-fold 
validation process across the 16 target variables. The target variables 
are placed in the left-most column, followed by average P, R, and, F 
obtained by each individual classification model. The results of each 
model are separated by vertical lines. Precision measures the accuracy of 
the positive predictions. Higher precision values indicate a lower false 
positive rate. For most target variables, RFC and CART have relatively 
high precision values, indicating their ability to accurately classify 
positive instances. Recall measures the ability of the model to identify 
positive instances correctly. Higher recall values indicate a lower false 
negative rate. The RFC and CART tend to have higher recall values, 
closely followed by LDA for most target variables, indicating their ability 
to capture a higher percentage of positive instances. F1-score is the 
harmonic mean of precision and recall, providing a balanced measure of 
the model’s performance. For most target variables, the RFC algorithm 
achieved higher F1-scores, indicating a good balance between precision 
and recall. Different algorithms performed better or worse depending on 
the target variables. For example, the CART and LDA tend to perform 
well for the population attributes while ADB and RFC performed rela-
tively better in classifying education and gross household income target 
variables. This suggests that the performance and predictability of the 
classification model vary depending on the specific target variable being 
predicted. In summary, the table highlights the importance of selecting 
the appropriate machine learning model for a given classification task, 
as well as the potential for variation in performance across different 
targets. 

5. Discussion 

The classification and prediction of occupant characteristics using 
machine learning tools can be useful in many ways. It can provide a way 
of partially automating the building occupant persona generation pro-
cedure which can facilitate both the occupants and the building de-
signers in many ways. The following is an example case study of 
occupant persona generated from the feature predictions from this work 
followed by a discussion on the shortcomings of this study along with the 
possible future research directions. 

5.1. Sample occupant persona prediction 

Table 5 shows a sample of prediction data from the machine learning 
models involving all 16 occupant characteristics. A random row from 
the RECS-2015 was provided as input to the ML models which predicted 
the 16 features. Table 5 reveals predictions from models with the best 
average accuracy (shown in Table 3) for each target feature. The pre-
diction column of Table 5 shows the actual prediction value from the 
models (numerical). The description column provides the textual 

Table 4 
Average precision (P), recall (R), and, f1-scores (F) of classification models.  

Models ADB  CART  KNN   LDA   RFC  SVM  
Target P R F P R F P R F P R F P R F P R F 

ATHOME  0.45  0.58  0.49  0.45  0.44  0.44  0.36  0.43  0.39  0.48  0.54  0.49  0.42  0.57  0.45  0.31  0.55  0.39 
EDUCATION  0.39  0.38  0.38  0.31  0.31  0.31  0.27  0.28  0.27  0.40  0.40  0.35  0.41  0.40  0.37  0.11  0.33  0.17 
EMPLOYHH  0.68  0.71  0.68  0.62  0.62  0.61  0.44  0.48  0.46  0.63  0.70  0.66  0.65  0.71  0.67  0.23  0.48  0.31 
EQUIPMUSE  0.47  0.55  0.48  0.62  0.61  0.61  0.34  0.37  0.34  0.60  0.60  0.58  0.66  0.66  0.65  0.14  0.38  0.21 
HHAGE  0.60  0.59  0.59  0.52  0.52  0.52  0.39  0.40  0.39  0.64  0.59  0.55  0.62  0.61  0.59  0.15  0.38  0.21 
MONEYPY  0.31  0.34  0.32  0.26  0.26  0.26  0.19  0.21  0.20  0.32  0.31  0.29  0.31  0.35  0.31  0.05  0.22  0.08 
NHSLDMEM  0.14  0.37  0.20  0.99  0.99  0.99  0.50  0.53  0.51  0.96  0.96  0.95  0.71  0.76  0.72  0.14  0.37  0.20 
NUMADULT  0.69  0.77  0.71  0.99  0.99  0.99  0.59  0.64  0.60  0.95  0.96  0.96  0.72  0.77  0.71  0.30  0.54  0.38 
NUMCHILD  0.68  0.69  0.66  0.99  0.99  0.99  0.59  0.67  0.62  0.96  0.97  0.96  0.68  0.75  0.69  0.46  0.68  0.55 
TEMPGONE  0.55  0.56  0.55  0.52  0.52  0.52  0.29  0.32  0.30  0.51  0.51  0.49  0.54  0.55  0.50  0.13  0.37  0.20 
TEMPGONEAC  0.40  0.47  0.38  0.63  0.63  0.63  0.31  0.31  0.31  0.56  0.58  0.53  0.62  0.64  0.61  0.10  0.31  0.15 
TEMPHOME  0.53  0.55  0.52  0.60  0.59  0.59  0.33  0.37  0.34  0.56  0.55  0.52  0.62  0.63  0.60  0.17  0.41  0.24 
TEMPHOMEAC  0.54  0.56  0.54  0.66  0.66  0.67  0.30  0.32  0.30  0.65  0.62  0.59  0.66  0.67  0.64  0.09  0.30  0.14 
TEMPNITE  0.57  0.58  0.57  0.55  0.54  0.55  0.30  0.33  0.31  0.50  0.50  0.45  0.58  0.58  0.52  0.12  0.35  0.18 
TEMPNITEAC  0.59  0.57  0.57  0.61  0.61  0.61  0.28  0.30  0.28  0.53  0.53  0.47  0.63  0.63  0.61  0.10  0.31  0.15 
USEWWAC  0.80  0.86  0.82  0.85  0.85  0.85  0.62  0.74  0.66  0.86  0.83  0.83  0.85  0.88  0.86  0.57  0.76  0.65  

Table 5 
Sample occupant characteristics prediction.  

Feature Prediction Description 

EQUIPMUSE 1 Set a heating temperature and leave it there most 
of the time during the winter 

USEWWAC 1 Set a cooling temperature and leave it there most 
of the time during the summer 

TEMPHOME 4 Typical temperature during winter days when 
people are at home is 65–68 ◦F 

TEMPGONE 2 Typical temperature during winter days when no 
one at home is 51–60 ◦F 

TEMPNITE 4 Typical temperature during winter nights when 
people are at home is 65–68 ◦F 

TEMPHOMEAC 5 Typical temperature during summer days when 
people are at home is 69–72 ◦F 

TEMPGONEAC 7 Typical temperature during summer days when no 
one at home is 77–96 ◦F 

TEMPNITEAC 4 Typical temperature during summer nights when 
people are at home is 65–68 ◦F 

HHAGE 3 Middle age adult (31–50) 
EMPLOYHH 1 Employed full time 
EDUCATION 3 Some college or associate degree 
NHSLDMEM 2 2 People live in the house 
NUMADULT 2 2 Adults live in the house 
NUMCHILD 0 There are no children living in the house 
ATHOME 0 Noone is present at home during the weekdays 
MONEYPY 13 Gross household income is about $60,000 to 

$74,999  

S.M.H. Anik et al.                                                                                                                                                                                                                              



Energy & Buildings 297 (2023) 113485

13

description of each prediction from the class details of Table 1. As an 
example of the applicability of the results, OpenAI’s ChatGPT [70] was 
utilized with the information present in Table 5 for generating a 
descriptive occupant persona that yielded the following output: 

“The individual is a middle-aged adult, between the ages of 31 and 50. 
The residents are employed full-time and have attained some college ed-
ucation or an associate degree. Their household consists of two adults, 
with no children residing in the house. The gross household income falls 
within the range of approximately $60,000 to $74,999. This income level 
can help inform decisions related to energy consumption, budgeting, and 
overall financial considerations. 
During the winter, the heating temperature is set and left at a consistent 
level most of the time. When people are at home during winter days, the 
typical temperature is maintained between 65 and 68 ◦F, providing a 
comfortable and cozy environment. However, when no one is at home 
during winter days, the temperature is adjusted to a lower range of 51 to 
60 ◦F to conserve energy and reduce heating costs. During winter nights 
when people are at home, the temperature is again set between 65 and 68 
◦F to ensure a pleasant sleep environment. 
In the summer, a cooling temperature is set and maintained throughout 
most of the time. When people are at home during summer days, the 
typical temperature is kept between 69 and 72 ◦F, providing a cool and 
comfortable atmosphere. However, when no one is present at home during 
summer days, the temperature is allowed to rise to a higher range of 77 to 
96 ◦F, conserving energy and minimizing cooling expenses. During sum-
mer nights when people are at home, the temperature is adjusted back to 
the comfortable range of 65 to 68 ◦F for a restful sleep. 
Considering their employment, the household members are likely absent 
from home during weekdays. This schedule suggests that the heating or 
cooling systems may be adjusted accordingly to conserve energy and 
optimize comfort during those periods.” 

The above is the ChatGPT-generated building occupant persona that 
harnessed 16 occupant characteristics predicted by the best-performing 
machine learning models of this study. It is an example to demonstrate 
the applicability of the results of this study is occupant persona gener-
ation. This is a representation of a composite person who is likely to 
occupy a particular building or space. It can help designers and de-
velopers to better understand and empathize with their target audience, 
which can lead to better design decisions and a more user-centric 
approach to building design. It can act as a reference point throughout 
the design process and building designers can ensure that the building is 
tailored to the needs and preferences of its intended occupants. This 
demonstrates the possible usage and feasibility of using machine 
learning tools in the development of building occupant persona. It also 
indicates the direction of automating the occupant persona development 
process. 

5.2. Limitations and future research 

The purpose of this research article was to investigate the application 
of state-of-the-art machine learning models in classifying building 
occupant characteristics. The ultimate objective was to automate the 
process of building occupant persona development, aiming to reduce 
manual effort and time consumption. To the best of our knowledge, 
other similar studies have harvested machine learning models in clas-
sifying occupant characteristics for occupant persona development. 
Thus, the results obtained in this study, cannot be directly compared 
with existing literature. However, the classification results obtained by 
the models indicate positively towards occupant persona development. 
The study successfully demonstrated the possibility of automating 
several steps in the generation of smart housing personas, thereby 
potentially streamlining the overall process. However, it is important to 
note that complete automation was not achieved in this study, leaving 
room for potential future research in this area. Further investigation is 
suggested focusing on fully automating the task, which would be a 

promising direction for future studies. This work utilized six different 
machine learning models in their analysis. Despite the extensive 
experimentation, this study couldn’t distinguish any individual model 
that could effectively classify all 16 occupant characteristics with better 
confidence than the rest. Consequently, the adoption of a model selec-
tion strategy, where the best-performing models are chosen for each 
specific characteristic is suggested. This approach allows for more ac-
curate predictions overall. 

Future research works may explore deep-learning models for the 
classification and prediction of building occupant characteristics. Deep- 
learning techniques have recently shown superior performance in 
dedicated tasks compared to traditional machine learning models. 
Therefore, incorporating deep-learning models into future research en-
deavors may yield improved accuracy and results. Additionally, the 
study proposes investigating the ensembling technique of machine 
learning models for occupant characteristic prediction. Ensemble 
learning combines the predictions of multiple models to enhance overall 
accuracy and robustness. Applying this approach to building occupant 
persona development could potentially yield more reliable results. The 
research conducted in this study has practical implications for auto-
mating the persona development process in the context of building 
performance simulation, design behavior interventions, and smart 
building management solutions. By leveraging the findings of this 
research, future studies can work towards fully automating the persona 
development process. This holistic automation can lead to enhanced 
functionality and accuracy in various applications related to building 
performance and management. 

6. Conclusion 

This research investigates the feasibility of using machine learning 
for the classification of occupant characteristics depending on housing 
and energy consumption data with a view of automating some steps of 
building persona development. In this study, six machine learning 
models have been utilized using the 2015 Residential Energy Con-
sumption Survey data from the U.S. Energy Information Administration 
(EIA). The results indicate that it is possible to use machine learning 
tools for the classification and prediction of occupant characteristics 
which yielded the possibility of partially automating the process of 
building occupant persona development. This research contributes to 
the body of knowledge by proposing a machine learning-based approach 
for facilitating the development of building occupant personas. It proves 
that given the necessary data, it is possible to automatically predict the 
occupant characteristics with moderate confidence, and thus, help to 
better understand occupants and improve living conditions to meet 
occupant demands. 
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